
R&S®GTSL
Generic Test Software Library
User Manual

Us
er

 M
an

ua
l

1143.6450.42 ─ 22
(;[ÎÀZ)

Te
st

&
Me

as
ur

em
en

t

This Software Description is valid for the following software versions.

● R&S®GTSL version 3.00 and higher versions

© 2016 Rohde & Schwarz GmbH & Co. KG
Mühldorfstr. 15, 81671 München, Germany
Phone: +49 89 41 29 - 0
Fax: +49 89 41 29 12 164
Email: info@rohde-schwarz.com
Internet: www.rohde-schwarz.com
Subject to change – Data without tolerance limits is not binding.
R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.
Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S®GTSL is abbreviated as R&S GTSL.

mailto:info@rohde-schwarz.com
http://www.rohde-schwarz.com

1171.0000.42 - 08 Page 1

Basic Safety Instructions

Always read through and comply with the following safety instructions!

All plants and locations of the Rohde & Schwarz group of companies make every effort to keep the safety

standards of our products up to date and to offer our customers the highest possible degree of safety. Our

products and the auxiliary equipment they require are designed, built and tested in accordance with the

safety standards that apply in each case. Compliance with these standards is continuously monitored by

our quality assurance system. The product described here has been designed, built and tested in

accordance with the EC Certificate of Conformity and has left the manufacturer’s plant in a condition fully

complying with safety standards. To maintain this condition and to ensure safe operation, you must

observe all instructions and warnings provided in this manual. If you have any questions regarding these

safety instructions, the Rohde & Schwarz group of companies will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed

for use solely in industrial and laboratory environments or, if expressly permitted, also in the field and must

not be used in any way that may cause personal injury or property damage. You are responsible if the

product is used for any purpose other than its designated purpose or in disregard of the manufacturer's

instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its product documentation

and within its performance limits (see data sheet, documentation, the following safety instructions). Using

the product requires technical skills and, in some cases, a basic knowledge of English. It is therefore

essential that only skilled and specialized staff or thoroughly trained personnel with the required skills be

allowed to use the product. If personal safety gear is required for using Rohde & Schwarz products, this

will be indicated at the appropriate place in the product documentation. Keep the basic safety instructions

and the product documentation in a safe place and pass them on to the subsequent users.

Observing the safety instructions will help prevent personal injury or damage of any kind caused by

dangerous situations. Therefore, carefully read through and adhere to the following safety instructions

before and when using the product. It is also absolutely essential to observe the additional safety

instructions on personal safety, for example, that appear in relevant parts of the product documentation. In

these safety instructions, the word "product" refers to all merchandise sold and distributed by the Rohde &

Schwarz group of companies, including instruments, systems and all accessories. For product-specific

information, see the data sheet and the product documentation.

Safety labels on products

The following safety labels are used on products to warn against risks and dangers.

Symbol Meaning Symbol Meaning

Notice, general danger location

Observe product documentation

ON/OFF Power

Caution when handling heavy equipment

Standby indication

Danger of electric shock Direct current (DC)

Basic Safety Instructions

1171.0000.42 - 08 Page 2

Symbol Meaning Symbol Meaning

 Caution ! Hot surface Alternating current (AC)

Protective conductor terminal

To identify any terminal which is intended for

connection to an external conductor for

protection against electric shock in case of a

fault, or the terminal of a protective earth

 Direct/alternating current (DC/AC)

Earth (Ground)

Class II Equipment

to identify equipment meeting the safety

requirements specified for Class II equipment

(device protected by double or reinforced

insulation)

Frame or chassis Ground terminal

EU labeling for batteries and accumulators

For additional information, see section "Waste

disposal/Environmental protection", item 1.

Be careful when handling electrostatic sensitive

devices

EU labeling for separate collection of electrical

and electronic devices

For additional information, see section "Waste

disposal/Environmental protection", item 2.

Warning! Laser radiation

For additional information, see section

"Operation", item 7.

Signal words and their meaning

The following signal words are used in the product documentation in order to warn the reader about risks

and dangers.

Indicates a hazardous situation which, if not avoided, will result in death or

serious injury.

Indicates a hazardous situation which, if not avoided, could result in death or

serious injury.

Indicates a hazardous situation which, if not avoided, could result in minor or

moderate injury.

Indicates information considered important, but not hazard-related, e.g.

messages relating to property damage.

In the product documentation, the word ATTENTION is used synonymously.

These signal words are in accordance with the standard definition for civil applications in the European

Economic Area. Definitions that deviate from the standard definition may also exist in other economic

areas or military applications. It is therefore essential to make sure that the signal words described here

are always used only in connection with the related product documentation and the related product. The

use of signal words in connection with unrelated products or documentation can result in misinterpretation

and in personal injury or material damage.

Basic Safety Instructions

1171.0000.42 - 08 Page 3

Operating states and operating positions

The product may be operated only under the operating conditions and in the positions specified by the

manufacturer, without the product's ventilation being obstructed. If the manufacturer's specifications are

not observed, this can result in electric shock, fire and/or serious personal injury or death. Applicable local

or national safety regulations and rules for the prevention of accidents must be observed in all work

performed.

1. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products:

predefined operating position is always with the housing floor facing down, IP protection 2X, use only

indoors, max. operating altitude 2000 m above sea level, max. transport altitude 4500 m above sea

level. A tolerance of ±10 % shall apply to the nominal voltage and ±5 % to the nominal frequency,

overvoltage category 2, pollution degree 2.

2. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability

are unsuitable for this purpose. Always follow the manufacturer's installation instructions when

installing the product and fastening it to objects or structures (e.g. walls and shelves). An installation

that is not carried out as described in the product documentation could result in personal injury or

even death.

3. Do not place the product on heat-generating devices such as radiators or fan heaters. The ambient

temperature must not exceed the maximum temperature specified in the product documentation or in

the data sheet. Product overheating can cause electric shock, fire and/or serious personal injury or

even death.

Electrical safety

If the information on electrical safety is not observed either at all or to the extent necessary, electric shock,

fire and/or serious personal injury or death may occur.

1. Prior to switching on the product, always ensure that the nominal voltage setting on the product

matches the nominal voltage of the mains-supply network. If a different voltage is to be set, the power

fuse of the product may have to be changed accordingly.

2. In the case of products of safety class I with movable power cord and connector, operation is

permitted only on sockets with a protective conductor contact and protective conductor.

3. Intentionally breaking the protective conductor either in the feed line or in the product itself is not

permitted. Doing so can result in the danger of an electric shock from the product. If extension cords

or connector strips are implemented, they must be checked on a regular basis to ensure that they are

safe to use.

4. If there is no power switch for disconnecting the product from the mains, or if the power switch is not

suitable for this purpose, use the plug of the connecting cable to disconnect the product from the

mains. In such cases, always ensure that the power plug is easily reachable and accessible at all

times. For example, if the power plug is the disconnecting device, the length of the connecting cable

must not exceed 3 m. Functional or electronic switches are not suitable for providing disconnection

from the AC supply network. If products without power switches are integrated into racks or systems,

the disconnecting device must be provided at the system level.

5. Never use the product if the power cable is damaged. Check the power cables on a regular basis to

ensure that they are in proper operating condition. By taking appropriate safety measures and

carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be

hurt by, for example, tripping over the cable or suffering an electric shock.

Basic Safety Instructions

1171.0000.42 - 08 Page 4

6. The product may be operated only from TN/TT supply networks fuse-protected with max. 16 A (higher

fuse only after consulting with the Rohde & Schwarz group of companies).

7. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the

socket provided for this purpose. Otherwise, sparks that result in fire and/or injuries may occur.

8. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric

shocks.

9. For measurements in circuits with voltages Vrms > 30 V, suitable measures (e.g. appropriate

measuring equipment, fuse protection, current limiting, electrical separation, insulation) should be

taken to avoid any hazards.

10. Ensure that the connections with information technology equipment, e.g. PCs or other industrial

computers, comply with the IEC 60950-1 / EN 60950-1 or IEC 61010-1 / EN 61010-1 standards that

apply in each case.

11. Unless expressly permitted, never remove the cover or any part of the housing while the product is in

operation. Doing so will expose circuits and components and can lead to injuries, fire or damage to the

product.

12. If a product is to be permanently installed, the connection between the protective conductor terminal

on site and the product's protective conductor must be made first before any other connection is

made. The product may be installed and connected only by a licensed electrician.

13. For permanently installed equipment without built-in fuses, circuit breakers or similar protective

devices, the supply circuit must be fuse-protected in such a way that anyone who has access to the

product, as well as the product itself, is adequately protected from injury or damage.

14. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a bolt of

lightning) can reach the product. Otherwise, the person operating the product will be exposed to the

danger of an electric shock.

15. Any object that is not designed to be placed in the openings of the housing must not be used for this

purpose. Doing so can cause short circuits inside the product and/or electric shocks, fire or injuries.

16. Unless specified otherwise, products are not liquid-proof (see also section "Operating states and

operating positions", item 1). Therefore, the equipment must be protected against penetration by

liquids. If the necessary precautions are not taken, the user may suffer electric shock or the product

itself may be damaged, which can also lead to personal injury.

17. Never use the product under conditions in which condensation has formed or can form in or on the

product, e.g. if the product has been moved from a cold to a warm environment. Penetration by water

increases the risk of electric shock.

18. Prior to cleaning the product, disconnect it completely from the power supply (e.g. AC supply network

or battery). Use a soft, non-linting cloth to clean the product. Never use chemical cleaning agents such

as alcohol, acetone or diluents for cellulose lacquers.

Operation

1. Operating the products requires special training and intense concentration. Make sure that persons

who use the products are physically, mentally and emotionally fit enough to do so; otherwise, injuries

or material damage may occur. It is the responsibility of the employer/operator to select suitable

personnel for operating the products.

Basic Safety Instructions

1171.0000.42 - 08 Page 5

2. Before you move or transport the product, read and observe the section titled "Transport".

3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction

(allergens) such as nickel cannot be generally excluded. If you develop an allergic reaction (such as a

skin rash, frequent sneezing, red eyes or respiratory difficulties) when using a Rohde & Schwarz

product, consult a physician immediately to determine the cause and to prevent health problems or

stress.

4. Before you start processing the product mechanically and/or thermally, or before you take it apart, be

sure to read and pay special attention to the section titled "Waste disposal/Environmental protection",

item 1.

5. Depending on the function, certain products such as RF radio equipment can produce an elevated

level of electromagnetic radiation. Considering that unborn babies require increased protection,

pregnant women must be protected by appropriate measures. Persons with pacemakers may also be

exposed to risks from electromagnetic radiation. The employer/operator must evaluate workplaces

where there is a special risk of exposure to radiation and, if necessary, take measures to avert the

potential danger.

6. Should a fire occur, the product may release hazardous substances (gases, fluids, etc.) that can

cause health problems. Therefore, suitable measures must be taken, e.g. protective masks and

protective clothing must be worn.

7. Laser products are given warning labels that are standardized according to their laser class. Lasers

can cause biological harm due to the properties of their radiation and due to their extremely

concentrated electromagnetic power. If a laser product (e.g. a CD/DVD drive) is integrated into a

Rohde & Schwarz product, absolutely no other settings or functions may be used as described in the

product documentation. The objective is to prevent personal injury (e.g. due to laser beams).

8. EMC classes (in line with EN 55011/CISPR 11, and analogously with EN 55022/CISPR 22,

EN 55032/CISPR 32)

 Class A equipment:

Equipment suitable for use in all environments except residential environments and environments

that are directly connected to a low-voltage supply network that supplies residential buildings

Note: Class A equipment is intended for use in an industrial environment. This equipment may

cause radio disturbances in residential environments, due to possible conducted as well as

radiated disturbances. In this case, the operator may be required to take appropriate measures to

eliminate these disturbances.

 Class B equipment:

Equipment suitable for use in residential environments and environments that are directly

connected to a low-voltage supply network that supplies residential buildings

Repair and service

1. The product may be opened only by authorized, specially trained personnel. Before any work is

performed on the product or before the product is opened, it must be disconnected from the AC supply

network. Otherwise, personnel will be exposed to the risk of an electric shock.

Basic Safety Instructions

1171.0000.42 - 08 Page 6

2. Adjustments, replacement of parts, maintenance and repair may be performed only by electrical

experts authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant

to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed

after parts relevant to safety have been replaced (visual inspection, protective conductor test,

insulation resistance measurement, leakage current measurement, functional test). This helps ensure

the continued safety of the product.

Batteries and rechargeable batteries/cells

If the information regarding batteries and rechargeable batteries/cells is not observed either at all or to the

extent necessary, product users may be exposed to the risk of explosions, fire and/or serious personal

injury, and, in some cases, death. Batteries and rechargeable batteries with alkaline electrolytes (e.g.

lithium cells) must be handled in accordance with the EN 62133 standard.

1. Cells must not be taken apart or crushed.

2. Cells or batteries must not be exposed to heat or fire. Storage in direct sunlight must be avoided.

Keep cells and batteries clean and dry. Clean soiled connectors using a dry, clean cloth.

3. Cells or batteries must not be short-circuited. Cells or batteries must not be stored in a box or in a

drawer where they can short-circuit each other, or where they can be short-circuited by other

conductive materials. Cells and batteries must not be removed from their original packaging until they

are ready to be used.

4. Cells and batteries must not be exposed to any mechanical shocks that are stronger than permitted.

5. If a cell develops a leak, the fluid must not be allowed to come into contact with the skin or eyes. If

contact occurs, wash the affected area with plenty of water and seek medical aid.

6. Improperly replacing or charging cells or batteries that contain alkaline electrolytes (e.g. lithium cells)

can cause explosions. Replace cells or batteries only with the matching Rohde & Schwarz type (see

parts list) in order to ensure the safety of the product.

7. Cells and batteries must be recycled and kept separate from residual waste. Rechargeable batteries

and normal batteries that contain lead, mercury or cadmium are hazardous waste. Observe the

national regulations regarding waste disposal and recycling.

Transport

1. The product may be very heavy. Therefore, the product must be handled with care. In some cases,

the user may require a suitable means of lifting or moving the product (e.g. with a lift-truck) to avoid

back or other physical injuries.

2. Handles on the products are designed exclusively to enable personnel to transport the product. It is

therefore not permissible to use handles to fasten the product to or on transport equipment such as

cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the

means of transport or lifting. Observe the safety regulations of the manufacturer of the means of

transport or lifting. Noncompliance can result in personal injury or material damage.

3. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely

and properly. The manufacturer assumes no responsibility for accidents or collisions. Never use the

product in a moving vehicle if doing so could distract the driver of the vehicle. Adequately secure the

product in the vehicle to prevent injuries or other damage in the event of an accident.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 7

Waste disposal/Environmental protection

1. Specially marked equipment has a battery or accumulator that must not be disposed of with unsorted

municipal waste, but must be collected separately. It may only be disposed of at a suitable collection

point or via a Rohde & Schwarz customer service center.

2. Waste electrical and electronic equipment must not be disposed of with unsorted municipal waste, but

must be collected separately.

Rohde & Schwarz GmbH & Co. KG has developed a disposal concept and takes full responsibility for

take-back obligations and disposal obligations for manufacturers within the EU. Contact your

Rohde & Schwarz customer service center for environmentally responsible disposal of the product.

3. If products or their components are mechanically and/or thermally processed in a manner that goes

beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel)

may be released. For this reason, the product may only be disassembled by specially trained

personnel. Improper disassembly may be hazardous to your health. National waste disposal

regulations must be observed.

4. If handling the product releases hazardous substances or fuels that must be disposed of in a special

way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the

manufacturer of the hazardous substances or fuels and the applicable regional waste disposal

regulations must be observed. Also observe the relevant safety instructions in the product

documentation. The improper disposal of hazardous substances or fuels can cause health problems

and lead to environmental damage.

For additional information about environmental protection, visit the Rohde & Schwarz website.

Instrucciones de seguridad elementales

¡Es imprescindible leer y cumplir las siguientes instrucciones e informaciones de seguridad!

El principio del grupo de empresas Rohde & Schwarz consiste en tener nuestros productos siempre al día

con los estándares de seguridad y de ofrecer a nuestros clientes el máximo grado de seguridad. Nuestros

productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de

seguridad vigentes. Nuestro sistema de garantía de calidad controla constantemente que sean cumplidas

estas normas. El presente producto ha sido fabricado y examinado según el certificado de conformidad

de la UE y ha salido de nuestra planta en estado impecable según los estándares técnicos de seguridad.

Para poder preservar este estado y garantizar un funcionamiento libre de peligros, el usuario deberá

atenerse a todas las indicaciones, informaciones de seguridad y notas de alerta. El grupo de empresas

Rohde & Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas

informaciones de seguridad.

Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto

está destinado exclusivamente al uso en la industria y el laboratorio o, si ha sido expresamente

autorizado, para aplicaciones de campo y de ninguna manera deberá ser utilizado de modo que alguna

persona/cosa pueda sufrir daño. El uso del producto fuera de sus fines definidos o sin tener en cuenta las

instrucciones del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna

forma responsable de consecuencias a causa del mal uso del producto.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 8

Se parte del uso correcto del producto para los fines definidos si el producto es utilizado conforme a las

indicaciones de la correspondiente documentación del producto y dentro del margen de rendimiento

definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso del producto

hace necesarios conocimientos técnicos y ciertos conocimientos del idioma inglés. Por eso se debe tener

en cuenta que el producto solo pueda ser operado por personal especializado o personas instruidas en

profundidad con las capacidades correspondientes. Si fuera necesaria indumentaria de seguridad para el

uso de productos de Rohde & Schwarz, encontraría la información debida en la documentación del

producto en el capítulo correspondiente. Guarde bien las informaciones de seguridad elementales, así

como la documentación del producto, y entréguelas a usuarios posteriores.

Tener en cuenta las informaciones de seguridad sirve para evitar en lo posible lesiones o daños por

peligros de toda clase. Por eso es imprescindible leer detalladamente y comprender por completo las

siguientes informaciones de seguridad antes de usar el producto, y respetarlas durante el uso del

producto. Deberán tenerse en cuenta todas las demás informaciones de seguridad, como p. ej. las

referentes a la protección de personas, que encontrarán en el capítulo correspondiente de la

documentación del producto y que también son de obligado cumplimiento. En las presentes

informaciones de seguridad se recogen todos los objetos que distribuye el grupo de empresas

Rohde & Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así

como toda clase de accesorios. Los datos específicos del producto figuran en la hoja de datos y en la

documentación del producto.

Señalización de seguridad de los productos

Las siguientes señales de seguridad se utilizan en los productos para advertir sobre riesgos y peligros.

Símbolo Significado Símbolo Significado

Aviso: punto de peligro general

Observar la documentación del producto

Tensión de alimentación de PUESTA EN

MARCHA / PARADA

Atención en el manejo de dispositivos de peso

elevado

Indicación de estado de espera (standby)

Peligro de choque eléctrico Corriente continua (DC)

Advertencia: superficie caliente Corriente alterna (AC)

Conexión a conductor de protección Corriente continua / Corriente alterna (DC/AC)

Conexión a tierra

El aparato está protegido en su totalidad por un

aislamiento doble (reforzado)

Conexión a masa

Distintivo de la UE para baterías y

acumuladores

Más información en la sección

"Eliminación/protección del medio ambiente",

punto 1.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 9

Símbolo Significado Símbolo Significado

Aviso: Cuidado en el manejo de dispositivos

sensibles a la electrostática (ESD)

Distintivo de la UE para la eliminación por

separado de dispositivos eléctricos y

electrónicos

Más información en la sección

"Eliminación/protección del medio ambiente",

punto 2.

Advertencia: rayo láser

Más información en la sección

"Funcionamiento", punto 7.

Palabras de señal y su significado

En la documentación del producto se utilizan las siguientes palabras de señal con el fin de advertir contra

riesgos y peligros.

Indica una situación de peligro que, si no se evita, causa lesiones

graves o incluso la muerte.

Indica una situación de peligro que, si no se evita, puede causar

lesiones graves o incluso la muerte.

Indica una situación de peligro que, si no se evita, puede causar

lesiones leves o moderadas.

Indica información que se considera importante, pero no en relación

con situaciones de peligro; p. ej., avisos sobre posibles daños

materiales.

En la documentación del producto se emplea de forma sinónima el

término CUIDADO.

Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el área

económica europea. Pueden existir definiciones diferentes a esta definición en otras áreas económicas o

en aplicaciones militares. Por eso se deberá tener en cuenta que las palabras de señal aquí descritas

sean utilizadas siempre solamente en combinación con la correspondiente documentación del producto y

solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en

combinación con productos o documentaciones que no les correspondan puede llevar a interpretaciones

equivocadas y tener por consecuencia daños en personas u objetos.

Estados operativos y posiciones de funcionamiento

El producto solamente debe ser utilizado según lo indicado por el fabricante respecto a los estados

operativos y posiciones de funcionamiento sin que se obstruya la ventilación. Si no se siguen las

indicaciones del fabricante, pueden producirse choques eléctricos, incendios y/o lesiones graves con

posible consecuencia de muerte. En todos los trabajos deberán ser tenidas en cuenta las normas

nacionales y locales de seguridad del trabajo y de prevención de accidentes.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 10

1. Si no se convino de otra manera, es para los productos Rohde & Schwarz válido lo que sigue:

como posición de funcionamiento se define por principio la posición con el suelo de la caja para

abajo, modo de protección IP 2X, uso solamente en estancias interiores, utilización hasta 2000 m

sobre el nivel del mar, transporte hasta 4500 m sobre el nivel del mar. Se aplicará una tolerancia de

±10 % sobre el voltaje nominal y de ±5 % sobre la frecuencia nominal. Categoría de sobrecarga

eléctrica 2, índice de suciedad 2.

2. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características

de peso o de estabilidad no sean aptos para él. Siga siempre las instrucciones de instalación del

fabricante cuando instale y asegure el producto en objetos o estructuras (p. ej. paredes y estantes). Si

se realiza la instalación de modo distinto al indicado en la documentación del producto, se pueden

causar lesiones o, en determinadas circunstancias, incluso la muerte.

3. No ponga el producto sobre aparatos que generen calor (p. ej. radiadores o calefactores). La

temperatura ambiente no debe superar la temperatura máxima especificada en la documentación del

producto o en la hoja de datos. En caso de sobrecalentamiento del producto, pueden producirse

choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

Seguridad eléctrica

Si no se siguen (o se siguen de modo insuficiente) las indicaciones del fabricante en cuanto a seguridad

eléctrica, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia

de muerte.

1. Antes de la puesta en marcha del producto se deberá comprobar siempre que la tensión

preseleccionada en el producto coincida con la de la red de alimentación eléctrica. Si es necesario

modificar el ajuste de tensión, también se deberán cambiar en caso dado los fusibles

correspondientes del producto.

2. Los productos de la clase de protección I con alimentación móvil y enchufe individual solamente

podrán enchufarse a tomas de corriente con contacto de seguridad y con conductor de protección

conectado.

3. Queda prohibida la interrupción intencionada del conductor de protección, tanto en la toma de

corriente como en el mismo producto. La interrupción puede tener como consecuencia el riesgo de

que el producto sea fuente de choques eléctricos. Si se utilizan cables alargadores o regletas de

enchufe, deberá garantizarse la realización de un examen regular de los mismos en cuanto a su

estado técnico de seguridad.

4. Si el producto no está equipado con un interruptor para desconectarlo de la red, o bien si el

interruptor existente no resulta apropiado para la desconexión de la red, el enchufe del cable de

conexión se deberá considerar como un dispositivo de desconexión.

El dispositivo de desconexión se debe poder alcanzar fácilmente y debe estar siempre bien accesible.

Si, p. ej., el enchufe de conexión a la red es el dispositivo de desconexión, la longitud del cable de

conexión no debe superar 3 m).

Los interruptores selectores o electrónicos no son aptos para el corte de la red eléctrica. Si se

integran productos sin interruptor en bastidores o instalaciones, se deberá colocar el interruptor en el

nivel de la instalación.

5. No utilice nunca el producto si está dañado el cable de conexión a red. Compruebe regularmente el

correcto estado de los cables de conexión a red. Asegúrese, mediante las medidas de protección y

de instalación adecuadas, de que el cable de conexión a red no pueda ser dañado o de que nadie

pueda ser dañado por él, p. ej. al tropezar o por un choque eléctrico.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 11

6. Solamente está permitido el funcionamiento en redes de alimentación TN/TT aseguradas con fusibles

de 16 A como máximo (utilización de fusibles de mayor amperaje solo previa consulta con el grupo de

empresas Rohde & Schwarz).

7. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por

completo y fuertemente en la toma de corriente. La no observación de estas medidas puede provocar

chispas, fuego y/o lesiones.

8. No sobrecargue las tomas de corriente, los cables alargadores o las regletas de enchufe ya que esto

podría causar fuego o choques eléctricos.

9. En las mediciones en circuitos de corriente con una tensión Ueff > 30 V se deberán tomar las medidas

apropiadas para impedir cualquier peligro (p. ej. medios de medición adecuados, seguros, limitación

de tensión, corte protector, aislamiento etc.).

10. Para la conexión con dispositivos informáticos como un PC o un ordenador industrial, debe

comprobarse que éstos cumplan los estándares IEC60950-1/EN60950-1 o IEC61010-1/EN 61010-1

válidos en cada caso.

11. A menos que esté permitido expresamente, no retire nunca la tapa ni componentes de la carcasa

mientras el producto esté en servicio. Esto pone a descubierto los cables y componentes eléctricos y

puede causar lesiones, fuego o daños en el producto.

12. Si un producto se instala en un lugar fijo, se deberá primero conectar el conductor de protección fijo

con el conductor de protección del producto antes de hacer cualquier otra conexión. La instalación y

la conexión deberán ser efectuadas por un electricista especializado.

13. En el caso de dispositivos fijos que no estén provistos de fusibles, interruptor automático ni otros

mecanismos de seguridad similares, el circuito de alimentación debe estar protegido de modo que

todas las personas que puedan acceder al producto, así como el producto mismo, estén a salvo de

posibles daños.

14. Todo producto debe estar protegido contra sobretensión (debida p. ej. a una caída del rayo) mediante

los correspondientes sistemas de protección. Si no, el personal que lo utilice quedará expuesto al

peligro de choque eléctrico.

15. No debe introducirse en los orificios de la caja del aparato ningún objeto que no esté destinado a ello.

Esto puede producir cortocircuitos en el producto y/o puede causar choques eléctricos, fuego o

lesiones.

16. Salvo indicación contraria, los productos no están impermeabilizados (ver también el capítulo

"Estados operativos y posiciones de funcionamiento", punto 1). Por eso es necesario tomar las

medidas necesarias para evitar la entrada de líquidos. En caso contrario, existe peligro de choque

eléctrico para el usuario o de daños en el producto, que también pueden redundar en peligro para las

personas.

17. No utilice el producto en condiciones en las que pueda producirse o ya se hayan producido

condensaciones sobre el producto o en el interior de éste, como p. ej. al desplazarlo de un lugar frío a

otro caliente. La entrada de agua aumenta el riesgo de choque eléctrico.

18. Antes de la limpieza, desconecte por completo el producto de la alimentación de tensión (p. ej. red de

alimentación o batería). Realice la limpieza de los aparatos con un paño suave, que no se deshilache.

No utilice bajo ningún concepto productos de limpieza químicos como alcohol, acetona o diluyentes

para lacas nitrocelulósicas.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 12

Funcionamiento

1. El uso del producto requiere instrucciones especiales y una alta concentración durante el manejo.

Debe asegurarse que las personas que manejen el producto estén a la altura de los requerimientos

necesarios en cuanto a aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se

pueden excluir lesiones o daños de objetos. El empresario u operador es responsable de seleccionar

el personal usuario apto para el manejo del producto.

2. Antes de desplazar o transportar el producto, lea y tenga en cuenta el capítulo "Transporte".

3. Como con todo producto de fabricación industrial no puede quedar excluida en general la posibilidad

de que se produzcan alergias provocadas por algunos materiales empleados ―los llamados

alérgenos (p. ej. el níquel)―. Si durante el manejo de productos Rohde & Schwarz se producen

reacciones alérgicas, como p. ej. irritaciones cutáneas, estornudos continuos, enrojecimiento de la

conjuntiva o dificultades respiratorias, debe avisarse inmediatamente a un médico para investigar las

causas y evitar cualquier molestia o daño a la salud.

4. Antes de la manipulación mecánica y/o térmica o el desmontaje del producto, debe tenerse en cuenta

imprescindiblemente el capítulo "Eliminación/protección del medio ambiente", punto 1.

5. Ciertos productos, como p. ej. las instalaciones de radiocomunicación RF, pueden a causa de su

función natural, emitir una radiación electromagnética aumentada. Deben tomarse todas las medidas

necesarias para la protección de las mujeres embarazadas. También las personas con marcapasos

pueden correr peligro a causa de la radiación electromagnética. El empresario/operador tiene la

obligación de evaluar y señalizar las áreas de trabajo en las que exista un riesgo elevado de

exposición a radiaciones.

6. Tenga en cuenta que en caso de incendio pueden desprenderse del producto sustancias tóxicas

(gases, líquidos etc.) que pueden generar daños a la salud. Por eso, en caso de incendio deben

usarse medidas adecuadas, como p. ej. máscaras antigás e indumentaria de protección.

7. Los productos con láser están provistos de indicaciones de advertencia normalizadas en función de la

clase de láser del que se trate. Los rayos láser pueden provocar daños de tipo biológico a causa de

las propiedades de su radiación y debido a su concentración extrema de potencia electromagnética.

En caso de que un producto Rohde & Schwarz contenga un producto láser (p. ej. un lector de

CD/DVD), no debe usarse ninguna otra configuración o función aparte de las descritas en la

documentación del producto, a fin de evitar lesiones (p. ej. debidas a irradiación láser).

8. Clases de compatibilidad electromagnética (conforme a EN 55011 / CISPR 11; y en analogía con EN

55022 / CISPR 22, EN 55032 / CISPR 32)

 Aparato de clase A:

Aparato adecuado para su uso en todos los entornos excepto en los residenciales y en aquellos

conectados directamente a una red de distribución de baja tensión que suministra corriente a

edificios residenciales.

Nota: Los aparatos de clase A están destinados al uso en entornos industriales. Estos aparatos

pueden causar perturbaciones radioeléctricas en entornos residenciales debido a posibles

perturbaciones guiadas o radiadas. En este caso, se le podrá solicitar al operador que tome las

medidas adecuadas para eliminar estas perturbaciones.

 Aparato de clase B:

Aparato adecuado para su uso en entornos residenciales, así como en aquellos conectados

directamente a una red de distribución de baja tensión que suministra corriente a edificios

residenciales.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 13

Reparación y mantenimiento

1. El producto solamente debe ser abierto por personal especializado con autorización para ello. Antes

de manipular el producto o abrirlo, es obligatorio desconectarlo de la tensión de alimentación, para

evitar toda posibilidad de choque eléctrico.

2. El ajuste, el cambio de partes, el mantenimiento y la reparación deberán ser efectuadas solamente

por electricistas autorizados por Rohde & Schwarz. Si se reponen partes con importancia para los

aspectos de seguridad (p. ej. el enchufe, los transformadores o los fusibles), solamente podrán ser

sustituidos por partes originales. Después de cada cambio de partes relevantes para la seguridad

deberá realizarse un control de seguridad (control a primera vista, control del conductor de

protección, medición de resistencia de aislamiento, medición de la corriente de fuga, control de

funcionamiento). Con esto queda garantizada la seguridad del producto.

Baterías y acumuladores o celdas

Si no se siguen (o se siguen de modo insuficiente) las indicaciones en cuanto a las baterías y

acumuladores o celdas, pueden producirse explosiones, incendios y/o lesiones graves con posible

consecuencia de muerte. El manejo de baterías y acumuladores con electrolitos alcalinos (p. ej. celdas de

litio) debe seguir el estándar EN 62133.

1. No deben desmontarse, abrirse ni triturarse las celdas.

2. Las celdas o baterías no deben someterse a calor ni fuego. Debe evitarse el almacenamiento a la luz

directa del sol. Las celdas y baterías deben mantenerse limpias y secas. Limpiar las conexiones

sucias con un paño seco y limpio.

3. Las celdas o baterías no deben cortocircuitarse. Es peligroso almacenar las celdas o baterías en

estuches o cajones en cuyo interior puedan cortocircuitarse por contacto recíproco o por contacto con

otros materiales conductores. No deben extraerse las celdas o baterías de sus embalajes originales

hasta el momento en que vayan a utilizarse.

4. Las celdas o baterías no deben someterse a impactos mecánicos fuertes indebidos.

5. En caso de falta de estanqueidad de una celda, el líquido vertido no debe entrar en contacto con la

piel ni los ojos. Si se produce contacto, lavar con agua abundante la zona afectada y avisar a un

médico.

6. En caso de cambio o recarga inadecuados, las celdas o baterías que contienen electrolitos alcalinos

(p. ej. las celdas de litio) pueden explotar. Para garantizar la seguridad del producto, las celdas o

baterías solo deben ser sustituidas por el tipo Rohde & Schwarz correspondiente (ver lista de

recambios).

7. Las baterías y celdas deben reciclarse y no deben tirarse a la basura doméstica. Las baterías o

acumuladores que contienen plomo, mercurio o cadmio deben tratarse como residuos especiales.

Respete en esta relación las normas nacionales de eliminación y reciclaje.

Transporte

1. El producto puede tener un peso elevado. Por eso es necesario desplazarlo o transportarlo con

precaución y, si es necesario, usando un sistema de elevación adecuado (p. ej. una carretilla

elevadora), a fin de evitar lesiones en la espalda u otros daños personales.

Instrucciones de seguridad elementales

1171.0000.42 - 08 Page 14

2. Las asas instaladas en los productos sirven solamente de ayuda para el transporte del producto por

personas. Por eso no está permitido utilizar las asas para la sujeción en o sobre medios de transporte

como p. ej. grúas, carretillas elevadoras de horquilla, carros etc. Es responsabilidad suya fijar los

productos de manera segura a los medios de transporte o elevación. Para evitar daños personales o

daños en el producto, siga las instrucciones de seguridad del fabricante del medio de transporte o

elevación utilizado.

3. Si se utiliza el producto dentro de un vehículo, recae de manera exclusiva en el conductor la

responsabilidad de conducir el vehículo de manera segura y adecuada. El fabricante no asumirá

ninguna responsabilidad por accidentes o colisiones. No utilice nunca el producto dentro de un

vehículo en movimiento si esto pudiera distraer al conductor. Asegure el producto dentro del vehículo

debidamente para evitar, en caso de un accidente, lesiones u otra clase de daños.

Eliminación/protección del medio ambiente

1. Los dispositivos marcados contienen una batería o un acumulador que no se debe desechar con los

residuos domésticos sin clasificar, sino que debe ser recogido por separado. La eliminación se debe

efectuar exclusivamente a través de un punto de recogida apropiado o del servicio de atención al

cliente de Rohde & Schwarz.

2. Los dispositivos eléctricos usados no se deben desechar con los residuos domésticos sin clasificar,

sino que deben ser recogidos por separado.

Rohde & Schwarz GmbH & Co.KG ha elaborado un concepto de eliminación de residuos y asume

plenamente los deberes de recogida y eliminación para los fabricantes dentro de la UE. Para

desechar el producto de manera respetuosa con el medio ambiente, diríjase a su servicio de atención

al cliente de Rohde & Schwarz.

3. Si se trabaja de manera mecánica y/o térmica cualquier producto o componente más allá del

funcionamiento previsto, pueden liberarse sustancias peligrosas (polvos con contenido de metales

pesados como p. ej. plomo, berilio o níquel). Por eso el producto solo debe ser desmontado por

personal especializado con formación adecuada. Un desmontaje inadecuado puede ocasionar daños

para la salud. Se deben tener en cuenta las directivas nacionales referentes a la eliminación de

residuos.

4. En caso de que durante el trato del producto se formen sustancias peligrosas o combustibles que

deban tratarse como residuos especiales (p. ej. refrigerantes o aceites de motor con intervalos de

cambio definidos), deben tenerse en cuenta las indicaciones de seguridad del fabricante de dichas

sustancias y las normas regionales de eliminación de residuos. Tenga en cuenta también en caso

necesario las indicaciones de seguridad especiales contenidas en la documentación del producto. La

eliminación incorrecta de sustancias peligrosas o combustibles puede causar daños a la salud o

daños al medio ambiente.

Se puede encontrar más información sobre la protección del medio ambiente en la página web de

Rohde & Schwarz.

Sehr geehrter Kunde,
Sie haben sich für den Kauf
eines Rohde & Schwarz Produk-
tes entschieden. Sie erhalten
damit ein nach modernsten Fer-
tigungsmethoden hergestelltes
Produkt. Es wurde nach den
Regeln unserer Qualitäts- und
Umweltmanagementsysteme
entwickelt, gefertigt und geprüft.
Rohde & Schwarz ist unter ande-
rem nach den Managementsys-
temen ISO 9001 und ISO 14001
zertifiziert.

Der Umwelt verpflichtet
 ❙ Energie-effiziente,
RoHS-konforme Produkte

 ❙ Kontinuierliche
Weiterentwicklung nachhaltiger
 Umweltkonzepte

 ❙ ISO 14001-zertifiziertes
Umweltmanagementsystem

Dear customer,
You have decided to buy a
Rohde & Schwarz product. This
product has been manufactured
using the most advanced meth-
ods. It was developed, manufac-
tured and tested in compliance
with our quality management
and environmental manage-
ment systems. Rohde & Schwarz
has been certified, for exam-
ple, according to the ISO 9001
and ISO 14001 management
systems.

Environmental commitment
 ❙ Energy-efficient products
 ❙ Continuous improvement in
environmental sustainability

 ❙ ISO 14001-certified
environmental management
system

Cher client,
Vous avez choisi d’acheter un
produit Rohde & Schwarz. Vous
disposez donc d’un produit
fabriqué d’après les méthodes
les plus avancées. Le dévelop-
pement, la fabrication et les
tests de ce produit ont été effec-
tués selon nos systèmes de
management de qualité et de
management environnemental.
La société Rohde & Schwarz a
été homologuée, entre autres,
conformément aux systèmes
de management ISO 9001 et
ISO 14001.

Engagement écologique
 ❙ Produits à efficience
énergétique

 ❙ Amélioration continue de la
durabilité environnementale

 ❙ Système de management
environnemental certifié selon
ISO 14001

Certified Environmental System

ISO 14001

Certified Quality System

ISO 9001
Quality management
and environmental
management

11
71

.0
20

0.
11

 V
 0

5.
01

1
1
7
1
0
2
0
0
1
1

ISO-Qualitaets-Zertifikat_1171-0200-11_A4.indd 1 28.09.2012 10:25:08

1171.0200.22-06.00

Customer Support

Technical support – where and when you need it
For quick, expert help with any Rohde & Schwarz equipment, contact one of our Customer Support
Centers. A team of highly qualified engineers provides telephone support and will work with you to find a
solution to your query on any aspect of the operation, programming or applications of Rohde & Schwarz
equipment.

Up-to-date information and upgrades
To keep your instrument up-to-date and to be informed about new application notes related to your
instrument, please send an e-mail to the Customer Support Center stating your instrument and your wish.
We will take care that you will get the right information.

Europe, Africa, Middle East Phone +49 89 4129 12345
customersupport@rohde-schwarz.com

North America Phone 1-888-TEST-RSA (1-888-837-8772)
customer.support@rsa.rohde-schwarz.com

Latin America Phone +1-410-910-7988
customersupport.la@rohde-schwarz.com

Asia/Pacific Phone +65 65 13 04 88
customersupport.asia@rohde-schwarz.com

China Phone +86-800-810-8228 /
 +86-400-650-5896
customersupport.china@rohde-schwarz.com

mailto:customersupport.asia@rohde-schwarz.com
mailto:customersupport.la@rohde-schwarz.com
mailto:customer.support@rsa.rohde-schwarz.com
mailto:customersupport@rohde-schwarz.com

GeneralR&S®GTSL

3User Manual 1143.6450.42 ─ 22

1 General
The Generic Test Software Library R&S GTSL is a collection of libraries for specific
test tasks like measurements, switching and signal generation. An ASCII file contains
the relevant configuration data which can be assigned to certain test sequences. So
measurement parameters can be changed and adjusted easy and quickly with a stan-
dard editor.

Any test managemet software may be used to control the test sequence. This software
combines the individual test sequences to form an executable test program. It also
adds all other functions important to the production operation, such as user administra-
tion, execution of multiple test sequences in multi-threading or parallel operation, col-
lection and storage of relevant measurement results and report generation.

The individual test cases of the Generic Test Software Library R&S GTSL can also be
combined by a C program into an executable test program.

Requirements
● Knowlege of the Windows XP / Windows 7 operating system is needed to operate

and work with the Generic Test Software Library R&S GTSL.
● Knowledge of C-programming is needed to create your own test libraries.

Software InstallationR&S®GTSL

4User Manual 1143.6450.42 ─ 22

2 Software Installation

2.1 General

The Generic Test Software Library R&S GTSL is either shipped on an installation DVD
or in a compressed installation file (zip-file) which can also be downloaded from R&S
GLORIS server. After extracting the compressed installation file, the whole contents of
the installation DVD can be found in the target directory.

Please read the README.TXT file before starting the installation by executing the
SETUP.EXE file.

To install the Generic Test Software Library R&S GTSL under Windows XP or Win-
dows 7, the user must be logged in as administrator or as a user with administrator
rights.
For additional information on the de-installation of previous versions of the Generic
Test Software Library R&S GTSL or concerning installation, consult the README.TXT
file on the installation DVD.

2.2 Installation

2.2.1 Runtime Setup

Before installing the Generic Test Software Library R&S GTSL the runtime environ-
ment of the computer must be setup. The installation DVD contains setup routines for
the initial setup of the runtime environment.

It is not necessary to setup the runtime environment with each R&S GTSL installation
or update, but only in the case of an initial setup, or if the version number of one of the
components has changed. To get more information about whether the runtime environ-
ment has to be updated or not, please refer to the README.TXT file on the installation
DVD.

The directory Runtime Setup on the installation DVD comprises the following subdir-
ectories:

Installation

Software InstallationR&S®GTSL

5User Manual 1143.6450.42 ─ 22

Figure 2-1: Runtime Setup subdirectories

Each subdirectory contains a separate installation application. Wherever more informa-
tion is helpful for the proper installation of one item, there is also a README.TXT file
located in the subdirectory. Please read this file before installing the specific runtime
setup item.

Adobe Acrobat Reader is needed to display the R&S GTSL documentation installed as
PDF files.

2.2.2 R&S GTSL

The Generic Test Software Library R&S GTSL is installed on the computer of the
TSVP Test System Versatile Platform or on any external computer via an installation
routine. Start the installation as follows:

1. Insert the DVD containing the Generic Test Software Library R&S GTSL or extract
the compressed installation zip-file to a directory on the hard disk drive.

2. Start the installation routine by executing the file setup.exe which is located in
the top level directory of the DVD or the directory where the compressed installa-
tion zip-file has been extracted to.

3. Then follow the on-screen installation instructions. There are slight differences in
the installation process depending on whether operating system Windows XP or
Windows 7 is used. The following pictures describe the installation process with
Windows 7. Additional notes are made to describe the differences appearing with
Windows XP.

● Installation wizard welcome screen

Installation

Software InstallationR&S®GTSL

6User Manual 1143.6450.42 ─ 22

Figure 2-2: Setup Welcome Screen

● Accept the License Agreement

Figure 2-3: Setup License Agreement

● Enter a user name and company name

Installation

Software InstallationR&S®GTSL

7User Manual 1143.6450.42 ─ 22

Figure 2-4: Setup Customer Information

● Select the directory, where the R&S GTSL program files are to be installed.

Figure 2-5: Setup Choose Destination Location

● Select the directory, where R&S GTSL application data is to be installed.
This dialog will not appear on operating system Windows XP. In Windows XP
the R&S GTSL application data is also installed in the R&S GTSL program files
installation directory. Due to restricted file writing access rights in Windows 7,
program files and application data must be installed in different directories.

Installation

Software InstallationR&S®GTSL

8User Manual 1143.6450.42 ─ 22

Figure 2-6: Setup Data Directory

● Select the program features to be installed

Figure 2-7: Setup Select Program Components

● Display of the current setup settings

Installation

Software InstallationR&S®GTSL

9User Manual 1143.6450.42 ─ 22

Figure 2-8: Setup Settings

● Display of the Setup Status

Figure 2-9: Setup Status

● Close the installation routine

Installation

Software InstallationR&S®GTSL

10User Manual 1143.6450.42 ─ 22

Figure 2-10: Setup Complete

2.3 File Structure

The test libraries supplied by ROHDE & SCHWARZ are stored in fixed directories at
the time of installation. The following directory structure can be found as subdirectories
below the R&S GTSL program files directory which was specified during the installation
process.

Figure 2-11: File structure program files

Description of installed R&S GTSL program files directories:

Table 2-1: File structure

Directory Contents

GTSL Generic Test Software Library. The root directory for
the R&S GTSL software can have any name.

GTSL\Bin Contains the test libraries (.DLL, .LIB) and the
help files (.HLP, .CHM) belonging to the test libra-
ries.

File Structure

Software InstallationR&S®GTSL

11User Manual 1143.6450.42 ─ 22

Directory Contents

GTSL\Develop
● Libraries
● Sample
● Tools

The directory ..\Libraries contains generally
valid examples for the creation of a high level test
library and a customer specific selftest library.

The directory ..\Samples contains two sample
applications that show how to call R&S GTSL func-
tions and driver functions.

The directory ..\Tools contains the R&S GTSL
Selftest application.

GTSL\Documentation Contains the various items of documentation in PDF
file format.

GTSL\EGTSL Appears only if the feature was selected at installa-
tion time. For detailed information please refer to the
document 'Software Description EGTSL.pdf'.

GTSL\Firmware Update This directory contains the firmware update applica-
tion with which the firmware of all TSVP Test Sys-
tem Versatile Platform plug in boards can be upda-
ted to a newer version when available.

GTSL\Include Contains the h-files (include files) needed for the
development of new test libraries.

GTSL\Operator Interface Contains the run time module for the operator inter-
face of TestStand. A TestStand run time licence is
required.

GTSL\Sequences Contains the test sequence examples created by
ROHDE & SCHWARZ.

The application data is stored in the following directory structure below the R&S GTSL
application data directory which was specified during the installation process if the
operating system is Windows 7. When using operating system Windows XP the appli-
cation data subdirectories are installed in the R&S GTSL program files directory.

Figure 2-12: File structure application data

Description of installed R&S GTSL application data files directories.

Table 2-2: Application data files directories

Directory Contents

GTSL\Configuration Contains samples of the two configuration files
PHYSICAL.INI and APPLICATION.INI.

GTSL\EGTSL Appears only if the feature was selected at installa-
tion time. Contains correction data for Enhanced
Generic Test Software Library.

For detailed information please refer to the docu-
ment Software Description EGTSL.pdf.

File Structure

Software InstallationR&S®GTSL

12User Manual 1143.6450.42 ─ 22

Directory Contents

GTSL\IC-Check Contains example configuration data for the IC-
Check application.

GTSL\License Contains one or more subdirectories with optional
license key files.

File Structure

Functional DescriptionR&S®GTSL

13User Manual 1143.6450.42 ─ 22

3 Functional Description

Figure 3-1: R&S GTSL layer model

In terms of its structure, the Generic Test Software Library R&S GTSL developed by
ROHDE & SCHWARZ is divided into different supply components and software layers.

A distinction is made between the software components supplied by ROHDE &
SCHWARZ and the components which must be supplied or adapted by the customer.
The software components to be provided by the customer may for example include the
following elements (specific to the customer and to the unit under test).

● device drivers
● calibration data
● test libraries
● test sequences

The software used in the R&S GTSL is divided into three different layers.

● The lowest level of the R&S GTSL accommodates the device drivers needed for
the hardware used (Device Driver Layer). These include the device drivers for the
following hardware:
– hardware developed and used by ROHDE & SCHWARZ.
– standard hardware.

● The middle level of the R&S GTSL accommodates the different test libraries
(Library Layer). These test libraries provide the functions needed to execute test
sequences. At this level, further information concerning the two files
PHYSICAL.INI and APPLICATION.INI is transferred to the Resource Manager
Library. The different device drivers of the lowest level are called from this level.

● The highest level accommodates the test sequences for the execution of the indi-
vidual test functions (Application Layer). The test sequences call functions from the
libraries in the middle level.

Functional DescriptionR&S®GTSL

14User Manual 1143.6450.42 ─ 22

Figure 3-2: Software structure

The test libraries form the core of the software and of the test sequences. The test
functions stored in the test libraries (Dynamic Link Library .DLL) are combined within a
test sequencer into executable test sequences.

The individual test functions access the test system hardware via the device drivers.

The hardware initialized in the Generic Test Software Library is managed by the
Resource Manager. The Resource Manager is likewise a .DLL file.

Thanks to the hardware management of the Resource Manager, the created test
sequences are independent of the current hardware configuration, so test sequences
do not need to be modified if the hardware or hardware settings are changed. All infor-
mation needed to run the test sequences is sent to the Resource Manager via two con-
figuration files (.INI files):

● PHYSICAL.INI
● APPLICATION.INI
Only these files need to be modified if the hardware or hardware settings are changed.
They can be edited with any text editor.

The Resource Manager also manages the hardware during the parallel execution of
test sequences. The Resource Manager prevents conflicts in accessing different test
functions or test sequences on the same hardware.

When using the Generic Test Software Library R&S GTSL, the user only has to make
changes to certain components of the software. In all cases, the user creates the test
sequences for the test applications at the highest level (Application Layer).

The user has to adapt the configuration file APPLICATION.INI to the relevant test
application. The user only has to adapt the configuration file PHYSICAL.INI in the
event of a change to the hardware configuration.

Functional DescriptionR&S®GTSL

15User Manual 1143.6450.42 ─ 22

Since an APPLICATION.INI configuration file normally exists for every test applica-
tion performed on the system, the file name can be matched to the test application in
question, e.g. APP_XXX.INI. The Resource Manager is told during setup which con-
figuration file is to be used.
On the other hand, only one PHYSICAL.INI configuration file is ever available on the
system.
For ease of comprehension, the file names APPLICATION.INI and PHYSICAL.INI
are used for the configuration files in the manual.

3.1 Operation of a Test Sequence

Figure 3-3: Test sequence operation

Operation of a Test Sequence

Functional DescriptionR&S®GTSL

16User Manual 1143.6450.42 ─ 22

The operation of every created and executed test sequence is divided into three
stages:

1. SETUP
First of all, the SETUP function of the Resource Manager (RESMGR) is called. Dur-
ing this function call, information from the two configuration files PHYSICAL.INI
and APPLICATION.INI is loaded. Then, the SETUP functions of the individual
libraries needed to perform the test steps are called (ROUTE, SIGANL, ICT etc.).
The necessary hardware and software components are requested, the relevant
device drivers are initialized and the devices are placed in a defined state.

2. MAIN
The individual test steps are performed.

3. CLEANUP
The CLEANUP functions of the Resource Manager and of the used libraries are
called. The system resources reserved during the setup functions and the reserved
hardware are freed again. A CLEANUP call is needed for every SETUP call.
The different CLEANUP function calls are executed even if the operation of the test
steps is interrupted. This ensures that the used system resources are always freed
again, and the used hardware is always returned to a defined basic state.

The division of the execution operation of a test sequence into these three subareas
takes place in the test sequence control system that is used.

Operation of a Test Sequence

R&S GTSL License ManagementR&S®GTSL

17User Manual 1143.6450.42 ─ 22

4 R&S GTSL License Management
Starting with GTSL 3.30, no GTSL license is required.

During the installation of the Generic Test Software Library R&S GTSL, all available
test libraries are copied to the system. You need a License Key File in order to access
the functions from the test libraries. Refer to Chapter 7, "Test Libraries", on page 49
for the license key required for each test library.

Without a valid License Key File, the functions of the test library will only work in „demo
mode". Access to the hardware is only simulated.

Each license is bound to a system serial number. The enabled test libraries can only
be run on the system with this serial number. The hardware system used is identified
via the system module TS-PSYS (R&S CompactTSVP, R&S PowerTSVP).

Figure 4-1: License Check

During license checking, the serial number and the name of the called test library are
compared with the License Key from the License Key File. The test library in question
will only be enabled if these coincide. The serial number and the name of the test
library are encoded in the License Key.

R&S GTSL License ManagementR&S®GTSL

18User Manual 1143.6450.42 ─ 22

Example:
License Key File
[Header]
FileVer=1.0
[Project]
Info=GTSL
[Modul]
Product=TS-LBAS
SerialNumber=850000008E4BD202
Key=C146648E1DEF9AD78663728A5D8E8D25885F457367D7F7C359F2C63BDB926 ...

The serial number is queried and a new License Key File is installed via the R&S
GTSL License Viewer. To open the R&S GTSL License Viewer, select

" Start" -> "Programs" -> "GTSL" -> "License Viewer"

Figure 4-2: R&S License Viewer

"System Identification" The serial number of the system

"Program Status" Displays the current status of theR&S GTSL License
Viewer.

"Licensed Components" Displays the test libraries for which a License Key
File has been imported.

Copies the displayed serial number to the clipboard.

R&S GTSL License ManagementR&S®GTSL

19User Manual 1143.6450.42 ─ 22

Imports a new License Key File into the R&S GTSL
License Viewer. The path and the file name of the
License Key File to be imported can be selected via
a file browser dialog.

Reads the serial number into theR&S GTSL License
Viewer.

Closes the R&S GTSL License Viewer.

"File > Exit" Closes the R&S GTSL License Viewer.

"Configure > System Identification" Opens the configuration dialog (see Figure 4-3).

"Help > About License Viewer" Shows version and copyright information about the
R&S GTSL License Viewer.

Figure 4-3: Configuration Dialog

"iButton" This option is not available for Windows 7.

"PSYS" "CAN Board" and "Controller" define the board and
interface Id of the CAN interface controlling the R&S
TS-PSYS module.

Default = 0

"Frame" defines the R&S CompactTSVP or R&S
PowerTSVP frame number where the R&S TS-
PSYS module is located.

Default = 1

"Slot": The only valid slot number for the R&S TS-
PSYS module is 15.

The settings made in the Configuration Dialog are
accepted with the "OK" button.

The settings made in the Configuration Dialog are
rejected with the "Cancel" button.

For each installed PSYS, a subdirectory with the relevant serial number is created in
the ..\GTSL\License directory. The License Key Files installed via the R&S GTSL
License Viewer are stored in the relevant subdirectory.

R&S GTSL License ManagementR&S®GTSL

20User Manual 1143.6450.42 ─ 22

If further test libraries are enabled, the serial number must be sent to ROHDE &
SCHWARZ. To avoid writing errors, the serial number can be copied from the R&S
GTSL License Viewer via the clipboard.

The License Key File newly created by ROHDE & SCHWARZ must be installed via the
R&S GTSL License Viewer. After that, unrestricted use of the test libraries is possible.

If, during a test sequence, test functions are used or called from a non-enabled test
library, a warning code will be displayed upon execution in TestStand. If non-enabled
functions are called during Resource Manager Setup, an error message will be dis-
played:

Figure 4-4: Error message from Resource Manager

If the error message is acknowledged by selecting "Ignore", the test sequence will run
in "demo mode".

Configuration FilesR&S®GTSL

21User Manual 1143.6450.42 ─ 22

5 Configuration Files
The required configuration files are stored by default in
the ..\GTSL\Configuration directory.

5.1 Syntax

The syntax of the Physical Layer Configuration File (PHYSICAL.INI) and of the Appli-
cation Layer Configuration File (APPLICATION.INI) is identical. The only difference
between the two files is in terms of how they are used (see Chapter 5.2, "PHYSI-
CAL.INI", on page 25 and Chapter 5.3, "APPLICATION.INI", on page 28).

Both files use the standard INI file format.

Example of standard INI file format:

[section]

key = value
...

A section begins with the section name written inside closed brackets ([]). The follow-
ing lines contain pairs of keywords and values. The keywords and the assigned values
are separated by an equals sign ("=").

In the section names and keywords, no distinction is made between upper and lower
case characters. However, the values after the equals sign are transferred exactly as
they are written in the file. Leading and trailing spaces are truncated.

5.1.1 Naming Conventions

In the Physical Layer Configuration File and in the Application Layer Configuration File,
several groups of keywords and sections are allowed. These refer to other sections
and reflect the relationships and interconnections.

The section names follow the naming conventions indicated below.

The section name begins with the section type followed by an arrow ("->", a minus sign
followed by a greater than sign). A unique name appears after the arrow. No spaces
are permitted between the name and the arrow.

In the section names, no distinction is made between upper and lower case characters.

The following characters are permitted for the logical names, the device names and the
bench names.

Table 5-1: Character set for names

"A" ... "Z" Upper case characters

"a" ... "z" Lower case characters

Syntax

Configuration FilesR&S®GTSL

22User Manual 1143.6450.42 ─ 22

"0" ... "9" Numbers

"_" Underscore

"." Decimal point

The following maximum character lengths are permitted for section names, keywords
and values:

Table 5-2: Maximum character lengths

section 80 characters

key 80 characters

value 260 characters

[LogicalNames] This section contains a list of names of devices and
benches. Any name can be used to identify a device
or bench (Application Layer Configuration File).

[Device->...] A device section contains different keywords to
identify the devices. These include the GPIB
address, the device type etc. (Physical Layer Con-
figuration File and Application Layer Configuration
File).

[Bench->...] This section contains a group of device entries
which together form a bench. A High Level Library
requires the name of a bench in its setup routine
(Application Layer Configuration File).

[ResourceManager] This section contains information for the configura-
tion of the Resource Manager.

5.1.2 [LogicalNames] Section

The [LogicalNames] section is used to assign a short, meaningful name to a device or
bench. Any name can be chosen. This section contains a list of unique name alloca-
tions. The values on the right side of the expressions must be valid names of a bench
or of a device section.

The [LogicalNames] section is an optional entry and is used only in the Application
Layer Configuration File.

Example:

[LogicalNames]
ICT = bench->ict
Power = device->psu_14

Syntax

Configuration FilesR&S®GTSL

23User Manual 1143.6450.42 ─ 22

5.1.3 [Device] Section

The [Device] section contains a list of keywords and assigned values. These keywords
and values precisely describe the relevant device. The name of the [Device] section
begins with "Device->" followed by a unique name. Any name can be chosen.

There must be a [Device] section for each device in the Physical Layer Configuration
File.

A [Device] section with the same name can be defined in the Application Layer Config-
uration File. Additional device information can be given at this point by means of further
keywords and values, or device information from the Physical Layer Configuration File
can be overwritten. However, it is not possible to define a [Device] section in the Appli-
cation Layer Configuration File which is not present in the Physical Layer Configuration
File.

The keywords in a [Device] section and their meaning depend on the libraries used by
the devices.

Table 5-3: Standard keywords of [Device] section

Keyword Description

Description Optional entry

Device description, remarks

Type Mandatory entry

Device type (e.g. CMU etc.)

ResourceDesc Mandatory entry

VISA device properties and device description in the
form: GPIB[card number]::
[primary address]::
[secondary address] PXI[segment number]:
:[device number]::[function]::INSTR
Examples:

GPIB0::15 or PXI0::16::0::INSTR

DriverSetup Optional entry

Special setup string for IVI driver, e.g. for simulation
of devices

The "Type" and "ResourceDesc" entries are required for the test libraries. Both entries
must be present in the Physical Layer Configuration File.

The information from the "Type" entry allows the test libraries to distinguish between
different supported devices (such as CMD55 or CMU). This information is also needed
for the system self-test.

The information from the "ResourceDesc" entry is needed to set up the device driver
and create the physical connection with the indicated device.

Example:

Syntax

Configuration FilesR&S®GTSL

24User Manual 1143.6450.42 ─ 22

[device->CMD55]
Description = Radio Communication Tester CMD55
Type = CMD55
ResourceDesc = GPIB0::4

5.1.4 [Bench] Section

The [Bench] section contains a list of keywords and assigned values which describes a
group of devices and their use. The name of the [Bench] section begins with "Bench->"
followed by a unique name. Any name can be chosen.

A [Bench] section can only be defined in the Application Layer Configuration File.

The keywords in a [Bench] section depend on the test library used by the bench. A
keyword always provides at least one reference to a device entry. Other keywords may
be necessary to describe the bench. The following keywords are predefined and
should be present in each [Bench] section.

Table 5-4: Standard keywords of [Bench] section

Keyword Description

Description Optional entry

Bench description, remarks

Simulation Optional entry

If set to 1, the complete bench is simulated by the
test library.

Trace Optional entry

If set to 1, the tracing function is enabled for the test
library

The [Bench] section can contain further useful keywords and values which are used by
a test library.

Example:

[bench->ICT]
Simulation = 0
Trace = 0
ICTDevice1 = device->psam
SwitchDevice1 = device->pmb_15
AnalogBus = device->ABUS
AppChannelTable = io_channel->ICT

5.1.5 [ResourceManager] Section

The [ResourceManager] section contains keywords and assigned values to control the
behaviour of the Resource Manager library. The following keywords are supported:

Syntax

Configuration FilesR&S®GTSL

25User Manual 1143.6450.42 ─ 22

Table 5-5: Keywords of [ResourceManager] section

Key name Remarks

Trace Blocks the tracing function (value = 0), enables the
tracing function (value = 1). The function impacts on
all libraries.

TraceFile Defines the path and the name of the trace file.

TraceToScreen The tracing information is displayed on the standard
screen (value = 1).

TraceTimeStamp Writes the time of day at the start of each tracing
line (value = 1).

TraceThreadID Writes the ID of the current thread at the start of
each tracing line (value = 1).

5.2 PHYSICAL.INI

In the file PHYSICAL.INI (Physical Layer Configuration File), all hardware assemblies
available in the Generic Test Software Library are described along with the corre-
sponding definitions and settings (see example PHYSICAL.INI file). This file also con-
tains definitions which are applicable to all test applications to be executed on the sys-
tem (e.g. type definition). The information entered in this file is used by all test libraries
and thus by each test step.

The PHYSICAL.INI file normally exists only once in the system as it reflects the exact
physical structure. The file must only be modified in the event of a hardware change.

The Resource Manager calls and administers the information from the PHYSICAL.INI
file.

5.2.1 Example file for PHYSICAL.INI

 Descrip-
tion

[device->PAM]
Description
Type
ResourceDesc
DriverDll
DriverPrefix
DriverOption
SFTDll
SFTPrefix

= "TS-PAM, Analyzer Module, Slot 5"
= PAM
= PXI1::13::0::INSTR
= rspam.dll
= rspam
= "Simulate=0,RangeCheck=1"
= sftmpam.dll
= SFTMPAM

1

2

3

4

5

6

7

8

9

PHYSICAL.INI

Configuration FilesR&S®GTSL

26User Manual 1143.6450.42 ─ 22

 Descrip-
tion

[device->PSAM]
Description
Type
ResourceDesc
DriverDll
DriverPrefix
DriverOption

= "TS-PSAM, Source and Measurement Module, Slot 8"
= PSAM
= PXI1::10::0::INSTR
= rspsam.dll
= rspsam
= "Simulate=0,RangeCheck=1"

1

2

3

4

5

6

7

; Note: the self test DLL and prefix keywords must be removed for the
first TS-PSAM module, because it is already tested in the basic
self test.

10

;SFTDll
;SFTPrefix

= sftmpsam.dll
= SFTMPSAM

10

10

[device->PICT]
Description

= "TS-PICT, In-Circuit Test Extension Module, Slot
9"

1

2

Type
ResourceDesc
DriverDll
DriverPrefix
DriverOption
SFTDll
SFTPrefix

= PICT
= PXI2::15::0::INSTR
= rspict.dll
= rspict
= "Simulate=0,RangeCheck=1"
= sftmpict.dll
= SFTMPICT

3

4

5

6

7

8

9

[device->PMB_15]
Description
Type
ResourceDesc
DriverDll
DriverPrefix
DriverOption
SFTDll
SFTPrefix

= "TS-PMB, Matrix Module, Slot 15"
= PMB
= CAN0::0::1::15
= rspmb.dll
= rspmb
= "Simulate=0,RangeCheck=1"
= sftmpmb.dll
= SFTMPMB

1

2

3

4

5

6

7

8

9

PHYSICAL.INI

Configuration FilesR&S®GTSL

27User Manual 1143.6450.42 ─ 22

 Descrip-
tion

[device->PSM1_16]
Description
Type
ResourceDesc
DriverDll
DriverPrefix
DriverOption
SFTDll
SFTPrefix

= "TS-PSM1, Power Switch Module, Slot 16"
= PSM1
= CAN0::0::1::16
= rspsm1.dll
= rspsm1
= "Simulate=0,RangeCheck=1"
= sftmpsm1.dll
= SFTMPSM1

1

2

3

4

5

6

7

8

9

[device->PSYS1]
Description
Type
ResourceDesc
DriverDll
DriverPrefix
DriverOption
SFTDll
SFTPrefix

= "TS-PSYS1, System Module, Slot 15 (rear)"
= PSYS1
= CAN0::0::5::15
= rspsys.dll
= rspsys
= "Simulate=0,RangeCheck=1"
= sftmpsys.dll
= SFTMPSYS

1

2

3

4

5

6

7

8

9

; Analog bus pseudo-device, used by ROUTE, SWMGR and EGTSL 10

[device->ABUS]
Description
Type

= "Analog Bus"
= AB

1

2

3

[io_channel->system]
.DMM_HI
.DMM_LO

= PSAM!DMM_HI
= PSAM!DMM_LO

11

12

12

5.2.2 Description of Example File PHYSICAL.INI

The description is based on the example file in Chapter 5.2.1, "Example file for PHYSI-
CAL.INI", on page 25. The indicated numbers refer to the corresponding positions in
the example file. The place-holder "XY" in the following listing stands for the corre-
sponding entries.

PHYSICAL.INI

Configuration FilesR&S®GTSL

28User Manual 1143.6450.42 ─ 22

Table 5-6: Description of PHYSICAL.INI

1 [device->XY] Defines the name under which the device is called in
the test libraries. A separate entry must be made for
each device. The entry in square brackets [] defines
a new section within which new definitions are made.

2 Description = "XY" Gives a detailed description of the defined device.
The entry is optional.

3 Type = "XY" Gives the exact designation of the defined device.
This designation is needed to call the corresponding
device driver. The entry is mandatory.

4 ResourceDesc = "XY" Gives the necessary hardware information required
for the defined device.

The entry is mandatory.

Details provided at this point include, for example:

GPIB address: GPIB1::20::1 (example)

GPIB[card number]::[primary address]::
[secondary address]
Serial interface: COMX
PXI address: PXI1::10::0::INSTR (example)

PXI[segment number]::[device number]::
[function]::INSTR

5 DriverDll = XY Gives the path and the file name of the device driver.

6 DriverPrefix = XY Gives a prefix for the device driver.

7 Driver Option = XY Gives certain options applicable to the device driver.

8 SFTDll = XY Gives the path and the file name of the self test
device driver.

9 SFTPrefix = XY Gives a prefix for the self test device driver.

10 Text appearing after a semicolon (;) is interpreted as
a comment.

11

+

12

[IO_Channel->system] The following definitions of I/O channels apply to all
applications executed on the system. On the right
side are the physical channel names as defined by
the hardware and by the device driver. On the left
side are the logical channel names as used in the
test libraries.

13 ResourceDesc_XY = In the case of certain devices, special subassemblies
can be addressed directly through their primary
address and secondary address. The relevant hard-
ware information can be indicated especially for this
subassembly with the corresponding designation.

5.3 APPLICATION.INI

In the APPLICATION.INI file (Application Layer Configuration File) is a description of
how the individual test libraries and the test functions use the hardware components
(see example file APPLICATION.INI). Different hardware components can be com-

APPLICATION.INI

Configuration FilesR&S®GTSL

29User Manual 1143.6450.42 ─ 22

bined into groups (bench). This bench can then be used within the test function. Fur-
thermore, definitions are made in this file which apply to certain test applications to be
executed on the system (e.g. definition of designations in the case of multi-channel
operation).

The Resource Manager calls and administers the information from the
APPLICATION.INI file.

Since an Application Layer Configuration File (APPLICATION.INI) normally exists for
each test application executed on the system, the file name can be matched to the test
application in question, e.g. APP_XXX.INI. The Resource Manager is told during
setup which Application Layer Configuration File is to be used.
For ease of comprehension, the file name APPLICATION.INI is used for the Applica-
tion Layer Configuration File in the manual.

5.3.1 Example File for APPLICATION.INI

 Description

[ResourceManager] 1

; general trace settings (normally off) 2

Trace
TraceFile

= 0
= resmgr_trace.txt

3

4

[LogicalNames]
ICT

= bench->ICT

5

6

[bench->ICT]
Description
Simulation
Trace
ICTDevice1
ICTDevice2
SwitchDevice1

= ICT bench
= 0
= 0
= device->psam
= device->pict
= device->pmb_15

7

8

9

10

11

11

11

; used for functional test 2

SwitchDevice2 = device->PSM1_16 11

AnalogBus = device->ABUS 11

AppChannelTable
AppWiringTable

= io_channel->BenchGSM
= io_wiring->ICT

12

13

APPLICATION.INI

Configuration FilesR&S®GTSL

30User Manual 1143.6450.42 ─ 22

 Description

[io_channel->ICT]
GND
INPUT
OUTPUT
TR1.B
TR1.C
TR1.E
VCC

= pmb1!P1
= pmb1!P2
= pmb1!P3
= pmb1!P4
= pmb1!P5
= pmb1!P6
= pmb1!P7

14

15

15

15

15

16

16

16

[io_wiring->ICT]
GND
INPUT
OUTPUT
TR1.B
TR1.C
TR1.E
VCC

= F1 S15 X10A1
= F1 S15 X10A2
= F1 S15 X10A3
= F1 S15 X10A4
= F1 S15 X10A5
= F1 S15 X10A6
= F1 S15 X10A7

17

18

18

18

18

18

18

18

5.3.2 Description of Example File APPLICATION.INI

The description is based on the example file in Chapter 5.3.1, "Example File for APPLI-
CATION.INI", on page 29. The indicated numbers refer to the corresponding positions
in the example file. The place-holder "XY" in the following listing stands for the corre-
sponding entries.

Table 5-7: Description of APPLICATION.INI

1 [ResourceManager] Defines a new section (identified
by the square brackets []) with
information evaluated directly by
the Resource Manager.

2 Text appearing after a semicolon
(;) is interpreted as a comment.

3 Trace = x Enables (value = 1) or disables
(value = 0) tracing function.

4 Tracefile = fn Defines the path and the name of
the trace file.

5 to 6 [LogicalNames] Defines a new section in which
logical short names are defined.
The short names can be used to
call the libraries.

APPLICATION.INI

Configuration FilesR&S®GTSL

31User Manual 1143.6450.42 ─ 22

7 [bench->XY] Defines a new bench with its
name. The name, which is
defined at this point, is called in
the SETUP routine of the corre-
sponding test library.

8 Description = x Gives a detailed description of the
defined bench.

9 Simulation = x Blocks simulation of all entered
devices (value = 0). Enables sim-
ulation of the entered devices
(value = 1).

10 Trace = x Blocks the tracing function for that
bench (value = 0). Enables the
tracing function for that bench
(value = 1).

11 The listed devices with the rele-
vant defined names are assigned
to the bench. The addressed devi-
ces must be defined in the PHYS-
ICAL.INI file with their details.

12 AppChannelTable = xy Refers to a section [io_channel-
>…] with defined channel names
in APPLICATION.INI.

13 AppWiringTable = xy Refers to a section [io_wiring->…]
with the definitions of the wiring
table that is to apply for this
bench.

14 to 16 [io_channel->XY] Contains a list of user-specific
channel names which are
assigned to the physical device
names and to the physical device
channel names. The defined
names apply only to the relevant
application.

17 to 18 [io_wiring->XY] The physical wiring from the UUT
pins to the front connectors of the
R&S TS-PMB Matrix Cards. The
test points (nodes) are on the left.
The front connector locations are
on the right in the form:

F<frame number> S<slot num-
ber> X10<column><row>

F1 S15 X10A1 means:

TSVP frame 1

Slot 15

Front connector X10, column A,
row 1

APPLICATION.INI

Editing and Running Test SequencesR&S®GTSL

32User Manual 1143.6450.42 ─ 22

6 Editing and Running Test Sequences

6.1 TestStand

6.1.1 General

The test sequences created by ROHDE & SCHWARZ are edited under the TestStand
Sequence Editor from National Instruments.

This section provides just a brief description of how a test sequence is edited and run.

A full description of the operation and functions of the individual menu windows of the
TestStand Sequence Editor will be found in the enclosed User Manual or the online
documentation.

A test sequence is edited as follows:

1. Open TestStand Sequence Editor with "Start" -> "Programs" -> "National
Instruments TestStand "-> "Sequence Editor" or by clicking the "Sequence
Editor" icon on the Windows XP / Windows 7 desktop. You will now see the main
screen of the Sequence Editor. Enter your user name and password (see Fig-
ure 6-1). The user name and password are stored in the user profiles of the Test-
Stand software.
Default setting:

● User Name: administrator
● Password: no password needed

Figure 6-1: Login

TestStand

Editing and Running Test SequencesR&S®GTSL

33User Manual 1143.6450.42 ─ 22

Figure 6-2: TestStand main screen

Note: User name and password can be set according to your specific company
requirements.

2. Open an existing test sequence with "File" -> "Open."
The test sequences created and supplied by ROHDE & SCHWARZ are stored by
default in the directory C:\Program Files\GTSL\Sequences. If a different
directory was specified during the software installation, the test sequences will be
stored there (...\Sequences).
The opened test sequence and its steps are displayed in the working window.

TestStand

Editing and Running Test SequencesR&S®GTSL

34User Manual 1143.6450.42 ─ 22

Figure 6-3: Working window

6.1.2 Editing a Test Step

Edit an individual test step as follows:

1. Double click the test step you wish to edit in the working window. This opens the
"Test Step Setup" menu window.

TestStand

Editing and Running Test SequencesR&S®GTSL

35User Manual 1143.6450.42 ─ 22

Figure 6-4: Test step setup

Settings for the selected test step are made in this window. The name of the step
and the type of call are shown in the title bar.

2. Click "Specify Module" to open the "Edit DLL Call" menu window for editing the
test step.

TestStand

Editing and Running Test SequencesR&S®GTSL

36User Manual 1143.6450.42 ─ 22

Figure 6-5: Edit DLL Call

The settings for the selected test step are made on the "Module" tab in this win-
dow.

"DLL Pathname:" Shows the name of the test library or the name of
the dynamic link library (DLL) of the test library. The
memory path of the DLL file is displayed.

"Browse..." Opens the directory structure for the selection of the
test library (DLL)

"Function" Shows a pick list of the test functions in the test
library. The selected test function is displayed.

"?" Shows the help text for the selected test function.
The function, purpose and parameters of the test
function are displayed.

"Reload Prototype" The test function is reloaded

"Calling Convention:" Always set to Standard Call in the case of R&S test
functions

"Parameter:" Displays a pick list of the parameters contained in
the test function. The selected parameter is dis-
played.

"Category:" Shows the various parameter settings. These set-
tings are parameter specific.

"Object Type"

"Value Expression"

TestStand

Editing and Running Test SequencesR&S®GTSL

37User Manual 1143.6450.42 ─ 22

"Browse..."

"New..." These buttons are used to insert, delete and move
parameters manually.

"Delete..."

"Move Up"

"Move Down"

6.1.3 Running Test Sequences

The edited test sequence can be run directly in the TestStand Sequence Editor.

The opened test sequence is run once with"Execute" -> "Single Pass".

The started test sequence is run in a separate window. The result of the test sequence
is displayed in a Report Window.

Select "Execute" -> "Test UUTs" to run the open test sequence in a continuous loop.
The operator is prompted to enter a serial number before each run. The started test
sequence is run in a separate window. Clicking "Stop" in the serial number input win-
dow cancels the test sequences. The results of the test sequences are displayed in a
Report Window with the corresponding serial number.

The Report Window must be closed when the test sequences have completed.

6.2 Generic Test Operator Interface R&S GTOP

6.2.1 General

The generated test sequences can also be executed via the Generic Test Operator
Interface R&S GTOP. The R&S GTOP is a user interface, which has been specifically
developed for application in multi-channel systems in the production area. R&S GTOP
can only be used to run test sequences. Test sequences cannot be created or altered.
Neither is it possible to debug test sequences.

The TestStand Run Time Engine and the Operator Interface Library are required to run
the test sequences in the Generic Test Operator Interface (R&S GTOP). Figure 6-6
shows the integration of the R&S GTOP when performing a test sequence.

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

38User Manual 1143.6450.42 ─ 22

Figure 6-6: Integration of Generic Test Operator Interface R&S GTOP

The Operator Interface Library provides the functions for interaction between the test
sequence in the TestStand and R&S GTOP.

The individual functions in the Operator Interface Library are described in the enclosed
help file.

The directory ...\gtsl\operatorinterface\develop\gtop contains several
example files, which renders the configuration and the running of R&S GTOP appa-
rent. These files include:

● gtop_demo.bat
shows how to call R&S GTOP from the command line.

● gtop_demo.ini
is a sample configuration file for R&S GTOP

● gtop_demo.seq
is a channel-independent sequence which shows how to
– use the OPERINT functions in the PreUUT and PostUUT callbacks
– use OPERINT_Get_Channel to find out if R&S GTOP is available and on which

channel the sequence is running.
– make a sequence independent from the operator interface, i.e. how it can run

with optimum results on R&S GTOP and with good results on a different opera-
tor interface like the TestStand sequence editor.

● gtop_demo_phys.ini, gtop_demo_appl.ini
The files are the physical and application layer ini files for the resource manager

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

39User Manual 1143.6450.42 ─ 22

Although R&S GTOP has been designed to meet many wishes of our customers, you
may want to customize the appearance or functionality of the operator interface. There-
fore, the R&S GTOP application and the OPERINT library are shipped with source
code. You will find the sources in the following directories:

● ...\gtsl\operatorinterface\develop\gtop
● ...\gtsl\develop\libraries\operint

Do not modify the original source files. Copy all files to a different directory outside the
R&S GTSL directory tree and work on the copy, otherwise your changes may be over-
written after the next R&S GTSL update.

How to modify the appearance of R&S GTOP:

Load the project file GTOP.PRJ in CVI and open the file GTOP.UIR. Modify text and
colors, include your company logo etc. as required. However, be careful with modifica-
tions of size and position of any panel.

How to modify the functionality of R&S GTOP:

Load the project file GTOP.PRJ in CVI and modify the source code. The R&S GTOP
project is based on the National Instruments CVI operator interface, which is part of
TestStand. Once you understand how the CVI operator interface works, you will also
be able to modify the functionality of R&S GTOP.

Most of the R&S GTOP specific functions can be found in the source module
applspec.c.

6.2.2 Running R&S GTOP

The Generic Test Operator Interface R&S GTOP is run using the gtop.exe file. When
running the file a R&S GTOP configuration file name must also be given (see Chap-
ter 6.2.4, "R&S GTOP Configuration File", on page 46).

Example: gtop.exe gtop_demo.ini
If, when run, a R&S GTOP configuration file is not specified, an error message is
issued and the start of the program is canceled.

Figure 6-7: Start Error Message

If a valid R&S GTOP configuration file is present, R&S GTOP is started with the details
specified within it. The start screen is displayed (see Figure 6-8) and a request to enter
the user name and password (see Figure 6-9). The user name and password are
specified in the TestStand software’s user profile.

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

40User Manual 1143.6450.42 ─ 22

Figure 6-8: Start Screen

Figure 6-9: Login

Default Configuration

User Name: administrator

Password: No password required

User name and password can be defined in company specific terms.

The exact procedure for defining a user name and password is described in the
enclosed TestStand documentation.

After a valid user name and password is entered the test sequences contained in the
R&S GTOP configuration file are loaded and automatically started. It is not possible to
stop individual test sequences. It is only possible to terminate the complete Generic
Test Operator Interface R&S GTOP using the "File" -> "Exit" menu item.

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

41User Manual 1143.6450.42 ─ 22

6.2.3 Operator Interface

The Generic Test Operator Interface R&S GTOP shown below is configured for a 2-
channel system. If a 1-channel system configuration is used, the right-hand operator
interface remains blank.

6.2.3.1 Representation

Figure 6-10: Generic Test Operator Interface R&S GTOP

1 = Display panel, channel 2
2 = Test-sequence display, channel 2
3 = Banner display, channel 2
4 = Information line, channel 2
5 = Statistic line, channel 2
6 = Statistic line, channel 1
7 = Information line, channel 1
8 = Banner display, channel 1
9 = Test-sequence display, channel 1
10 = Display panel, channel 1
11 = Menu bar

6.2.3.2 Menu Bar

The menu bar is used to call up the functions for operating and configuring the Generic
Test Operator Interface R&S GTOP. The menu items called up from R&S GTOP then
open the corresponding dialogs in TestStand. The menu items are enabled or blocked
in accordance with the user’s privileges (see also the TestStand documentation).

The table below describes the available functions.

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

42User Manual 1143.6450.42 ─ 22

Table 6-1: Menu Bar

File Login Login using another name (shift
change, administrator login)

Exit Terminate all sequences, exit
Generic Test Operator Interface
R&S GTOP

Execute Tracing Enabled Switch tracing on and off in the
test sequence display

Configure Adapters Default TestStand configuration
dialog

Station Options Default TestStand configuration
dialog

External Viewers Default TestStand configuration
dialog

Search Directories Default TestStand configuration
dialog

Statistic Options Configuration of statistic options
(see Chapter 6.2.3.6, "Statistic
Display", on page 45)

Report Options Default TestStand configuration
dialog

Database Options Default TestStand configuration
dialog

Help About Display information on Generic
Test Operator Interface R&S
GTOP (version number)

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

43User Manual 1143.6450.42 ─ 22

6.2.3.3 Test Sequence Display

Figure 6-11: Test Sequence Display

The test sequence display represents a small section of the current test sequence. If
under the <Execute> <Tracing Enabled> menu item, tracing is activated (ticked off),
the current step is marked by an arrow "->". Step flags are displayed by letters (e.g. "S"
for skip). This is followed by the step result (Done, Passed, Failed,..) and the name of
the step. Faulty steps are displayed in another color (red).

6.2.3.4 Banner

Banners are changing, colored highlighted displays. Certain banners may cover up the
test sequence display. The various banners are filed in the Operator Interface Library
as functions and can be integrated into the test sequence.

During a standard process, each channel of the test sequence process and the "Test-
ing..." banner below are displayed. Invoking the corresponding function from the Oper-
ator Interface Library enables the selected banner to be superimposed over the test
sequence and thus displayed. The selected banner is displayed until

● the display of a new banner is invoked from the test sequence.
● the function for clearing the selected banner is invoked from the test sequence.

Banners are not placed on top of each other. Only one banner is displayed per chan-
nel. It is therefore not necessary to explicitly delete every single banner. Only when the
test sequence display is to be shown again, is it necessary to delete the displayed ban-
ner.

There are two types of banner:

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

44User Manual 1143.6450.42 ─ 22

1. Permanent banners

Pass Banner Fail Banner Error Banner

Close Bench Banner Terminated Banner

Permanent banner text is given in the appropriate function of the Operator Inter-
face Library. The texts can be easily converted to UIR files without any modification
to the source code. On the "Fail Banner" and "Error Banner" additional free text
can also be displayed. The text is transfered from the test sequence to the banner.
See also the help file in the Operator Interface Library.

2. Configurable banners

Text Banner Dialog Banner Dialog and Prompt Banner

The content of the configurable banners is transferred over the corresponding
Operator Interface Library functions from the test sequence to the Generic Test
Operator Interface R&S GTOP. The following configurations are possible:

● Text content
● Button inscription
● Text and background color

The "Text Banner" displays a freely selectable text. The "Text Banner" is displayed
until a new banner is invoked or the banner displayed is deleted.

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

45User Manual 1143.6450.42 ─ 22

The "Dialog Banner" displays a freely selectable text and up to two buttons. The
"Dialog Banner" is displayed until a button is clicked.
The "Dialog and Prompt Banner" displays a freely selectable text and an input
capability (e.g. for entering a serial number). Here too, up to two buttons can be
displayed. The data entered is returned to the test sequences. The "Dialog and
Prompt Banner " is displayed until a button is clicked.
See also the help file in the Operator Interface Library.

6.2.3.5 Information Bar

The user can display freely selectable text on the information bar. The text content is
given in the corresponding functions in the Operator Interface Library and integrated
into the test sequence. The text in the information bar is displayed until it is overwritten
by a new text.

6.2.3.6 Statistic Display

Data is collated and displayed for the statistic display throughout the test sequence
process.

Total Displays the number of tests performed.

Pass Ratio Displays the tests demarcated as PASS as a per-
centage.

since Displays the date, from which the statistic data has
been collated.

In order to ensure that the statistics can continue to be collated over a extended period
of time and beyond, the corresponding data is stored in the configuration file when exit-
ing the Generic Test Operator Interface R&S GTOP (see Chapter 6.2.4, "R&S GTOP
Configuration File", on page 46). The next time the R&S GTOP is started this data is
then loaded again and continued.

The <Configure><Statistic Options> menu item enables the dialog window for configur-
ing the statistic options to be called up (see Figure 6-12).

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

46User Manual 1143.6450.42 ─ 22

Figure 6-12: Statistic Options

Statistics Reset Period This selector switch enables the time period to be
configured for determining when the statistic data
should automatically be reset.

 Day
● The statistic data is automatically reset at the

end of a day.

Week
● The statistic data is automatically reset at the

end of a week.

Month
● The statistic data is automatically reset at the

end of a month.

Manual
● The statistic data can only be reset manually

(Button "Reset Statistics")

Reset Statistics Resets the statistic data.

OK The configurations made are saved in the configura-
tion file and the dialog window is closed.

Cancel The configurations made are cancelled and the dia-
log window closed.

6.2.4 R&S GTOP Configuration File

The R&S GTOP configuration file is, as everywhere in the R&S GTOP, structured simi-
lar to a Windows INI file.

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

47User Manual 1143.6450.42 ─ 22

Example:
[OperatorInterface]
NumPanels = 2
Statistics_Type = "daily"

[Panel_1]
SequenceFile = "C:\Program Files\GTSL\Sequences\test.seq"
Statistics_Start = "2001-04-03"
Total_Ok = 24
Total_Tested = 48

[Panel_2]
SequenceFile = "C:\Program Files\GTSL\Sequences\test.seq"
Statistics_Start = "2001-04-03"
Total_Ok = 24
Total_Tested = 48

The configuration file contains a general section [OperatorInterface] and a channel-
specific section [Panel_n].

[OperatorInterface]

NumPanels = Shows the number of channels which are to be dis-
played in the Generic Test Operator Interface R&S
GTOP. A channel-specific section [Panel_n] must
be given for each channel.

Permissible value: 1 or 2

Statistics_Type = Indicates the period when the statistic data is to be
automatically reset.

Permissible data:
● daily
● weekly
● monthly
● manually

[Panel_n]

SequenceFile = Indicates the path and file name of the test sequen-
ces to be performed in this channel.

Statistics_Start = Indicates the date, from which the statistic data has
been collated.

Total_Ok = Indicates the number of tests concluded with a
PASS.

Total_Tested = Displays the number of tests performed.

The "NumPanels" and "SequenceFile" entries must be given in the configuration file. If
these entries are missing, an error message is issued and the start of the Generic Test
Operator Interface R&S GTOP is terminated.

All other entries relate to statistic data. This data is automatically entered into the con-
figuration file using default values (see Table 6-2).

Generic Test Operator Interface R&S GTOP

Editing and Running Test SequencesR&S®GTSL

48User Manual 1143.6450.42 ─ 22

Table 6-2: Configuration file Default Value

INI File Eintrag Standardwert

Statistics_Type "manually"

Statistics_Start Today’s date in "yyyy-mm-dd" format

Total_Ok 0

Total_Tested 0

Generic Test Operator Interface R&S GTOP

Test LibrariesR&S®GTSL

49User Manual 1143.6450.42 ─ 22

7 Test Libraries
The following sections briefly review the test functions which are available in the test
libraries created by ROHDE & SCHWARZ.

A description of the individual test functions and their parameters will be found in the
online help for the particular test library. The help files (.HLP, .CHM) are in the direc-
tory ...\GTSL\BIN.

7.1 Generic Test Libraries

Starting with GTSL 3.30, no GTSL license is required.

7.1.1 Audio Analysis Library

7.1.1.1 General

Name of the dynamic link library (DLL): AUDIOANL.DLL

Name of the help file: AUDIOANL.HLP, AUDIOANL.CHM

License required: R&S TS-LAAA

Supported devices: Not required

The Audio Analysis Library offers functions to analyze audio waveform data in mem-
ory. The following analysis functions are supported:

● RMS calculation
● Single-/Multitone frequency response
● Distortion
● Filters (low-pass, high-pass, band-pass, band-stop, CCIR weighted/unweighted)
● Windows

7.1.1.2 Entries in PHYSICAL.INI

No entries required.

Generic Test Libraries

Test LibrariesR&S®GTSL

50User Manual 1143.6450.42 ─ 22

7.1.1.3 Entries in APPLICATION.INI

Section [bench->...]

Keyword Value Description

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0),

enables the tracing function of the
library (value = 1).

Default = 0

7.1.1.4 Functions

Management
 Setup AUDIOANL_Setup
 Library Version AUDIOANL_Lib_Version
 Cleanup AUDIOANL_Cleanup
Configuration
 Configure Filter AUDIOANL_Configure_Filter

Calculation
 Frequency Response AUDIOANL_Freq_Response
 Distortion AUDIOANL_Distortion
 RMS AUDIOANL_RMS
 Filter Delay AUDIOANL_Filter_Delay

7.1.2 DC Power Supply Test Library

7.1.2.1 General

Name of the dynamic link library (DLL): DCPWR.DLL

Name of the help file: CPWR.HLP, DCPWR.CHM

License required R&S TS-LBAS

Supported devices: R&S TS-PSU Power Supply / Load Module

R&S TS-PSU12 Power Supply / Load Module 12V

Any DC Power Supply with an IVI device driver

The DCPWR Library controls one or more DC power supplies with drivers that conform
to the IviDCPwr Class specification. It provides high level functions for controlling sev-
eral DC power supply devices in one bench. Each power supply device provides one
or more DC power channels.

Generic Test Libraries

Test LibrariesR&S®GTSL

51User Manual 1143.6450.42 ─ 22

7.1.2.2 Entries in PHYSICAL.INI

Section [device->...]

Keyword Value Description

Type String Mandatory entry

for R&S TS-PSU : PSU

for R&S TS-PSU12 : PSU12

for other IviDcPwr compliant
instruments : IVI_DCPWR

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

PXI[segment number]::
[device number]::
[function]::INSTR
CAN[board]::
[controller]::[frame]::
[slot]
GPIB[board]::
[primary address]::
[secondary address]

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions

for R&S TS-PSU: rspsu

for R&S TS-PSU12: rspsu

for others: driver dependent

DriverDLL String Mandatory entry

File name of the driver DLL

for R&S TS-PSU: rspsu.dll

for R&S TS-PSU12: rspsu.dll

for others: driver dependent

DriverOption String Optional entry

Option string being passed to the
device driver during the driver's
InitWithOptions function. See the
online help file for the appropriate
device driver.

7.1.2.3 Entries in APPLICATION.INI

Section [bench->...]

Generic Test Libraries

Test LibrariesR&S®GTSL

52User Manual 1143.6450.42 ─ 22

Keyword Value Description

DCPwrSupply<i> String Mandatory entry

Reference to a DC power supply
device section.

<i> stands for a number
1,2,3,...,n. Numbers must be in
ascending order without gaps. <i>
may be omitted in the case it is 1.

DCPwrChannelTable String Mandatory entry

Reference to the application
channel table section.

Simulation 0 / 1 Optional entry

Enables/disables library-level sim-
ulation, default = 0

Trace 0 / 1 Optional entry

Enables/disables tracing, default
= 0

Section [io_channel->...] (Mandatory entries)

Contains a list of user-defined channel names with corresponding device names and
device channel names. For details about channel name syntax see Chapter 8.3.4,
"Channel tables", on page 111.

Keyword Value Description

<user-defined name> String Physical channel description in
the form <device name>!<device
channel name>

7.1.2.4 Functions

Management
 Setup DCPWR_Setup
 Library Version DCPWR_Lib_Version
 Cleanup DCPWR_Cleanup
Configuration
 Voltage Level DCPWR_Conf_Voltage_Level
 Overvoltage Protection DCPWR_Conf_OVP
 Current Limit DCPWR_Conf_Current_Limit
 Output Range DCPWR_Conf_Output_Range
 Output Enabled DCPWR_Conf_Output_Enabled
Information
 Query Max Current Limit DCPWR_Query_Max_Current_Limit
 Query Max Voltage Level DCPWR_Query_Max_Voltage_Level
 Query Output State DCPWR_Query_Output_State
Utility
 Reset DCPWR_Reset
 Reset Output Protection DCPWR_Reset_Output_Protection

Generic Test Libraries

Test LibrariesR&S®GTSL

53User Manual 1143.6450.42 ─ 22

Measurement
 Measure DCPWR_Measure
Trigger
 Configure Trigger Source DCPWR_Conf_Trigger_Source
 Configure Triggered Voltage Level DCPWR_Conf_Triggered_Voltage_Level
 Configure Triggered Current Limit DCPWR_Conf_Triggered_Current_Limit
 Initiate DCPWR_Initiate
 Abort DCPWR_Abort
 Send Software Trigger DCPWR_Send_Software_Trigger
Instrument Driver Support
 Get Instrument Handle DCPWR_Instrument_Get_Handle
TS-PSU Specific Functions
 Configure Mode DCPWR_Conf_Mode
 Configure Ground Relay DCPWR_Conf_Ground_Relay
 Configure Relay Protection DCPWR_Conf_Relay_Protection
 Configure Remote Sensing DCPWR_Conf_Remote_Sensing
 Configure PWM Output DCPWR_Conf_Output_PWM
 Configure Trigger Output DCPWR_Conf_Trigger_Output
 Configure Measurement DCPWR_Conf_Measurement
 Initiate Trigger DCPWR_Initiate_Trigger
 Wait Until Settled DCPWR_Wait_Until_Settled
 Acquisition
 Configure Acquisition DCPWR_Conf_Acquisition
 Initiate Acquisition DCPWR_Initiate_Acquisition
 Fetch Acquisition DCPWR_Fetch_Acquisition
 Abort Acquisition DCPWR_Abort_Acquisition
 Arbitrary Waveform Output
 Set Arbitrary Waveform DCPWR_Set_Arb_Wfm
 Configure Arbitrary Waveform DCPWR_Conf_Arb_Wfm
 Configure Arbitrary Waveform Abort DCPWR_Conf_Arb_Wfm_Abort
 Initiate Arbitrary Waveform DCPWR_Initiate_Arb_Wfm
 Abort Arbitrary Waveform DCPWR_Abort_Arb_Wfm
 Gated Output
 Configure Gated Output DCPWR_Conf_Gated_Output
 Enable Gated Output DCPWR_Enable_Gated_Output
 PAC Control
 Configure PAC Control DCPWR_Conf_PAC_Control
 Sink Modes
 Configure Constant Current DCPWR_Conf_Const_Current
 Configure Constant Resistance DCPWR_Conf_Const_Resistance
 Configure Constant Power DCPWR_Conf_Const_Power
 Query Sink State DCPWR_Query_Sink_State

Generic Test Libraries

Test LibrariesR&S®GTSL

54User Manual 1143.6450.42 ─ 22

7.1.3 Digital I/O Manager Library

7.1.3.1 General

Name of the dynamic link library (DLL): DIOMGR.DLL

Name of the help file: DIOMGR.HLP, DIOMGR.CHM

License required: R&S TS-LBAS

Supported devices: R&S TS-PDFT, Digital Functional Test Module

R&S TS-PIO3B, Digital I/O Module

R&S TS-PIO4, Digital Functional Test Module

The Digital I/O Manager (DIO Manager) provides high level functions for digital func-
tional tests based on one or more R&S TS-PDFT module(s). These functions include:

● Configuration of stimulus and response channels
● Application of binary stimulus patterns
● Collection of binary response data

Stimulus and response patterns can be executed at an arbitrary rate, usually under
computer control. This is referred to as "Static Execution". Application of stimulus and
collection of response patterns at a fixed clock rate is referred to as "Dynamic Execu-
tion".

The "Static Execution" functions of the DIO Manager not only support R&S TS-PDFT
modules, but also R&S TS-PIO3B modules.

The DIO Manager supports static and dynamic pattern execution across several
R&S TS-PDFT modules and also static pattern executions across several R&S TS-
PIO3B or R&S TS-PIO4 modules. Stimulus and response channels can be defined
through logical channel names.

Dynamic pattern sets can be designed graphically with the waveform editor of the
ALTERA "Quartus II Web Edition" software. The DIO Manager imports the waveform
file, executes the pattern set and exports the results into a file. Deviations from the
expected patterns can be easily located by comparing both files in the Quartus wave-
form editor.

7.1.3.2 Entries in PHYSICAL.INI

Section [device->...]

Generic Test Libraries

Test LibrariesR&S®GTSL

55User Manual 1143.6450.42 ─ 22

Keyword Value Description

Type String Mandatory entry

R&S TS-PDFT: pdft

R&S TS-PIO3B: pio3b

R&S TS-PIO4: pio4

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

PXI[segment number]::
[device number]::
[function]::INSTR
CAN[board]::
[controller]::[frame]::
[slot]

DriverPrefix String Mandatory entry

prefix for the IVI driver functions,
without underscore

R&S TS-PDFT: rspdft

R&S TS-PIO3B: rspio3b

R&S TS-PIO4: rspio4

DriverDLL String Mandatory entry

File name of the driver DLL

R&S TS-PDFT: rspdft.dll
R&S TS-PIO3B: rspio3b.dll
R&S TS-PIO4: rspio4.dll

DriverOption String Optional entry

Option string being passed to the
device driver during the Driver's
InitWithOptions function. See the
online help file for the appropriate
device driver.

7.1.3.3 Entries in APPLICATION.INI

Section [bench->...]

Generic Test Libraries

Test LibrariesR&S®GTSL

56User Manual 1143.6450.42 ─ 22

Keyword Value Description

DIODevice<i> String Mandatory entry

Refers to a section with digital I/O
devices in PHYSICAL.INI
<i> stands for a number from
1,2,3,...,40. The numbers must be
assigned in ascending order with-
out gaps. <i> may be omitted in
the case it is 1.

DIOChannelTable String Mandatory entry

Refers to a section with defined
channel names in
APPLICATION.INI.

DIOTriggerLine String Optional entry

Specifies a PXI trigger line for
synchronization of two or more
R&S TS-PDFT modules

Valid values : 0 - 7

Default : 1

Simulation 0 / 1 Optional entry

Blocks simulation of all entered
devices (value = 0).

Enables simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function (value
= 0),

Enables the tracing function
(value = 1).

Default = 0

ChannelTableCase Sensitive 0 / 1 Optional entry

The channel names in the chan-
nel table are treated case-sensi-
tive (value = 1) or case-insensitive
(value = 0).

Section [io_channel->...] (Optional entries)

Mandatory entry

Contains a list of user-specific channel names which are assigned to the physical
device names and to the physical device channel names. The defined names apply
only to the relevant application. For details about channel name syntax see Chap-
ter 8.3.4, "Channel tables", on page 111.

Generic Test Libraries

Test LibrariesR&S®GTSL

57User Manual 1143.6450.42 ─ 22

Keyword Value Description

<user-defined name> String Physical channel description in
the form:

<device name>!<device channel
name>.

Permissible R&S TS-PDFT chan-
nel names are:

OUT1 - OUT32 (stimulus chan-
nesl)

IN1 - IN32 (response channels)

PO1 - PO4 (power output chan-
nels)

Permissible R&S TS-PIO3B chan-
nel names are:

PxIOy with x=0..7 and
y=0..7(stimulus/response chan-
nels)

P9TIOy with y=0..7 (stimulus/
response channels)

INH (inhibit stimulus channel)

Permissible R&S TS-PIO4 chan-
nel names are:

OUT1 - OUT32 (stimulus chan-
nels)

IN1 - IN32 (response channels)

7.1.3.4 Functions

Management
 Setup DIOMGR_Setup
 Library Version DIOMGR_Lib_Version
 Cleanup DIOMGR_Cleanup
Configuration
 Configure Stimulus DIOMGR_ConfigureStimulus
 Configure Response DIOMGR_ConfigureResponse
 Configure Loopback DIOMGR_ConfigureLoopback
Static Execution
 Port Stimulus DIOMGR_PortStimulus
 Port Response DIOMGR_PortResponse
Dynamic Execution
 Configuration
 Load Waveform DIOMGR_LoadWaveform
 Configure Pattern Set Timing DIOMGR_ConfigurePatternSetTiming
 Save Waveform DIOMGR_SaveWaveform
 Unload Waveform DIOMGR_UnloadWaveform
 Action
 Execute Pattern Set DIOMGR_ExecutePatternSet
 Wait Until Pattern Set Complete DIOMGR_WaitUntilPatternSetComplete
 Abort Pattern Set DIOMGR_AbortPatternSet

Generic Test Libraries

Test LibrariesR&S®GTSL

58User Manual 1143.6450.42 ─ 22

 Results
 Number of Executed Patterns DIOMGR_GetPatternSetExecutedPatternCount
 Number of Failed Patterns DIOMGR_GetPatternSetFailedPatternCount
 Number of Failed Channels DIOMGR_GetPatternSetFailedChannelCount
 Failed Channel Names DIOMGR_GetPatternSetFailedChannelNames
 High/Low Data of a Channel DIOMGR_GetPatternSetChannelData
 Pass/Fail Results of a Channel DIOMGR_GetPatternSetChannelResults
Instrument Driver Support
 Get Instrument Handle DIOMGR_Instrument_Get_Handle

7.1.4 DMM Test Library

7.1.4.1 General

Name of the dynamic link library (DLL): DMM.DLL

Name of the help file: DMM.HLP, DMM.CHM

License required R&S TS-LBAS

Supported devices: National Instruments NI4060, any other DMM with
IVI compliant driver

R&S TS-PSAM

The DMM Library has been implemented to control numerous digital multimeter drivers
that conform to the IviDmm Class specification. At present both the IVI-5 specification
functions and those determined obsolete are supported.

The DMM Library provides high level functions for configuring and performing mea-
surements.

7.1.4.2 Entries in PHYSICAL.INI

Section [device->...]

Generic Test Libraries

Test LibrariesR&S®GTSL

59User Manual 1143.6450.42 ─ 22

Keyword Value Description

Type String Mandatory entry

NI4060 or IVI_DMM

psam = R&S TS-PSAM Analog
Source and Measurement Module

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

DAQ::
[deviceNumber]::INSTR (only
NI460)

PXI[segment number]::
[device number]::
[function]::INSTR

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions,
without underscore:

NI4060: niDMM

IVI_DMM: driver dependent

R&S TS-PSAM: rspsam

DriverDLL String Mandatory entry

File name of the driver DLL

NI4060: nidmm_32.dll

IVI_DMM: driver dependent

R&S TS-PSAM: rspsam.dll

DriverOption String Optional entry

Option string being passed to the
device driver during the
Driver_Init function. See the
online help file for the appropriate
device driver.

PowerLineFrequency 50 or 60 Optional entry

Sets the power line frequency in
Hz, default = 60

(not for R&S TS-PSAM)

7.1.4.3 Entries in APPLICATION.INI

Section [bench->...]

Generic Test Libraries

Test LibrariesR&S®GTSL

60User Manual 1143.6450.42 ─ 22

Keyword Value Description

DigitalMultimeter String Mandatory entry

Reference to multimeter device
entry

Simulation 0 / 1 Optional entry

Enables/disables library-level sim-
ulation, default = 0

Trace 0 / 1 Optional entry

Enables/disables tracing, default
= 0

7.1.4.4 Functions

Setup DMM_Setup
Library Version DMM_Lib_Version
Configuration Functions
 Configure Measurement DMM_Conf_Measurement
 Configure Trigger DMM_Conf_Trigger
 Configure Trigger Slope DMM_Conf_Trigger_Slope
 Configure Auto Zero Mode DMM_Conf_Auto_Zero_Mode
 Configure AC Bandwidth DMM_Conf_AC_Bandwidth
 Configure Power Line Frequency DMM_Conf_Power_Line_Frequency
 Configure Measurement Complete DMM_Conf_Meas_Complete_Dest
 Configure Multi Point DMM_Conf_Multi_Point
Measurement Functions
 Measure DC Voltage DMM_Meas_DC_Voltage
 Measure DC Current DMM_Meas_DC_Current
 Measure AC Voltage DMM_Meas_AC_Voltage
 Measure AC Current DMM_Meas_AC_Current
 Measure Resistance DMM_Meas_Resistance
 Low Level Measurement Functions
 Initiate DMM_Initiate
 Fetch DMM_Fetch
 Abort DMM_Abort
 Send Software Trigger DMM_Send_Software_Trigger
Utility Functions
 Reset DMM_Reset
TS-PSAM Specific Functions
 Configure Lowpass Filter DMM_Conf_Lowpass_Filter
 Configure Trigger Signal DMM_Conf_Trigger_Signal
 Configure Analog Trigger DMM_Conf_Analog_Trigger
 Configure Trigger Output DMM_Conf_Trigger_Output
 Enable Trigger Output DMM_Enable_Trigger_Output
 Send Software Signal DMM_Send_Software_Signal
 Configure Coupling Relays DMM_Conf_Coupling_Relays
 Configure Ground Relay DMM_Conf_Ground_Relay
Cleanup DMM_Cleanup

Generic Test Libraries

Test LibrariesR&S®GTSL

61User Manual 1143.6450.42 ─ 22

7.1.5 Factory Toolbox Library

7.1.5.1 General

Name of the dynamic link library (DLL): FTBLIB.DLL

Name of the help file: FTBLIB.HLP, FTBLIB.CHM

License required R&S TS-LBAS

Supported devices: Digital IO Module 3B R&S TS-PIO3B

The "Factory Toolbox" library offers functions for identifying adapters via the Digital IO
Module 3B R&S TS-PIO3B. Two methods are available for this purpose:

● Parallel adapter identification via ports
● Serial adapter identification via SPI-EEPROM

The identification of test adapters is parameterized either via entries in a configuration
file for the application layer (APPLICATION.INI) or via function calls in the test pro-
gram. An R&S TS-PIO3B module must be entered in the file for configuring the system
(PHYSICAL.INI).

Parallel Adapter Identification via Ports

The parallel adapter identification is especially easy to implement but requires one or
two complete 8 bit IO ports. For this purpose, the 8 open drain ports (P0 to P7) are
available on the R&S TS-PIO3B module. To be able to identify an adapter uniquely, it
is only necessary to connect wires in the adapter with GND. Port bits that have not
been wired are read as "high" by the internal pull-up resistors.

Serial Adapter Identification via SPI-EEPROM

The serial adapter identification uses an SPI-EEPROM in the adapter and can be set
up easily in connection with an R&S TS-PTRF. The Atmel AT25160 module, a 16 kBit
(2 kByte) EEPROM for SPI is supported. In this way, all the open drain IO ports remain
free and only one SPI Chip-Select signal (E_CSx) of the R&S TS-PTRF is occupied. In
the following example, E_CS3 (port 3) is used for the adapter identification. In this case
you have to observe that the SPI signals (E_MOSI, E_MISO and E_SCLK) as well as
the selected Chip-Select signal must be connected to the front panel (X10) via jumpers
on the R&S TS-PTRF module.

Figure 7-1: Serial adapter identification via SPI-EEPROM

Generic Test Libraries

Test LibrariesR&S®GTSL

62User Manual 1143.6450.42 ─ 22

7.1.5.2 Entries in PHYSICAL.INI

An R&S TS-PIO3B module must be installed in the system and the related entry must
be available in the configuration file for the system.

Key Value Description

Type String Mandatory entry

PIO3B

ResourceDesc String Mandatory entry

resource descriptor in the form

CAN[board]::
[controller]::[frame]::
[slot]

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions,
without underscore: rspio3b

DriverDll String Mandatory entry

File name of the driver DLL
rspio3b.dll

DriverOption String Optional Entry

Option string being passed to the
device driver during the
Driver_Init function. See the
online help file for the appropriate
device driver.

Description String Optional Entry

Gives a detailed description of the
defined device.

7.1.5.3 Entries in APPLICATION.INI

This configuration file is usually created individually for each unit under test / each test
program. It can be assigned any name and stored in any directory. The following table
provides an overview of the keywords.

Section [bench->...]

Key Value Description

AdaIdentDevice String Optional entry

Refers to the device section of the
TS-PIO3B (e. g. AdaIdentDevice
= device->rspio3b_1) if the
adapter identification functionality.

AdaIdentParPortLo 0...7 Optional entry

R&S TS-PIO3B port from which
the lower 8 bits of the adapter
identification are read.

Default = 0

Generic Test Libraries

Test LibrariesR&S®GTSL

63User Manual 1143.6450.42 ─ 22

Key Value Description

AdaIdentParPortHi 0...7 Optional entry

R&S TS-PIO3B port from which
the higher 8 bits of the adapter
identification are read.

If only one 8-bit identification is to
be used, the same port as in the
"AdaIdentPortLo" parameter is
specified here.

The higher 8 bits in the result will
then be set to 0.

Default = 0 (8 bit identification via
port 0)

AdaIdentSpiPort 0..7 Optional entry

Controls the Chip-Select genera-
tion via an R&S TS-PTRF module
for the adapter identification with
R&S TS-PIO3B via an SPI
EEPROM. If the R&S TS-PTRF
module is not available, this
parameter will be ignored.

Default = 0

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0).

Enables simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0).

Enables the tracing function of the
library (value = 1).

Default = 0

7.1.5.4 Functions

The following routines are available for identifying a test adapter. Refer to the help file
(FTBLIB.HLP) for a description.

Management

Setup FTBLIB_Setup
Library Version FTBLIB_Lib_Version
Cleanup FTBLIB_Cleanup

Adapter Identification
Parallel Port

Parallel Config Port FTBLIB_AdaIdentParConfigPort

Generic Test Libraries

Test LibrariesR&S®GTSL

64User Manual 1143.6450.42 ─ 22

Parallel Read FTBLIB_AdaIdentParRead

SPI EEPROM

SPI Config Port FTBLIB_AdaIdentSpiConfigPort
SPI Read FTBLIB_AdaIdentSpiRead
SPI Write FTBLIB_AdaIdentSpiWrite

7.1.6 Function Generator Library

7.1.6.1 General

Name of the dynamic link library (DLL): FUNCGEN.DLL

Name of the help file: FUNCGEN.HLP, FUNCGEN.CHM

License required R&S TS-LBAS

Supported devices: R&S TS-PFG Arbitrary Waveform Generator

Any other waveform generator with IVI compliant
driver.

The Function Generator Library provides functions for waveform generators:

● Standard Waveforms
● Arbitrary Waveforms
● Arbitrary Waveform Sequences

7.1.6.2 Entries in PHYSICAL.INI

Section [device->...]

Keyword Value Description

Type String Mandatory entry

PFG = R&S TS-PFG Arbitrary
Waveform Generator

IVI_FGEN = other IVI compliant
generator

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

PXI[segment number]::
[device number]::
[function]::INSTR

Generic Test Libraries

Test LibrariesR&S®GTSL

65User Manual 1143.6450.42 ─ 22

Keyword Value Description

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions,
without underscore:

IVI_FGEN: driver dependent

R&S TS-PFG: rspfg

DriverDll String Mandatory entry

File name of the driver DLL

IVI_FGEN: driver dependent

R&S TS-PFG: rspfg.dll

DriverOption String Optional entry

Option string being passed to the
device driver during the
Driver_Init function. See the
online help file for the appropriate
device driver.

7.1.6.3 Entries in APPLICATION.INI

Section [bench->...]

Keyword Value Description

FunctionGenerator String Mandatory entry

Reference to the device entry of
the function generator in
PHYSICAL.INI.

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0).

Enables simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0),

enables the tracing function of the
library (value = 1).

Default = 0

7.1.6.4 Functions

Setup FUNCGEN_Setup
Library Version FUNCGEN_Lib_Version
Basic Instrument Operation
 Configure Operation Mode FUNCGEN_ConfigureOperationMode
 Configure Output Mode FUNCGEN_ConfigureOutputMode

Generic Test Libraries

Test LibrariesR&S®GTSL

66User Manual 1143.6450.42 ─ 22

 Configure Ref Clock Source FUNCGEN_ConfigureRefClockSource
 Configure Output Impedance FUNCGEN_ConfigureOutputImpedance
 Configure Output Enabled FUNCGEN_ConfigureOutputEnabled
 Initiate Generation FUNCGEN_InitiateGeneration
 Abort Generation FUNCGEN_AbortGeneration
Standard Function Output
 Configure Standard Waveform FUNCGEN_ConfigureStandardWaveform
Arbitrary Waveform Output
 Query Arb Waveform Capabilities FUNCGEN_QueryArbWfmCapabilities
 Create Arbitrary Waveform FUNCGEN_CreateArbWaveform
 Configure Arbitrary Waveform FUNCGEN_ConfigureArbWaveform
 Configure Sample Rate FUNCGEN_ConfigureSampleRate
 Clear Arbitrary Waveform FUNCGEN_ClearArbWaveform
Arbitrary Frequency
 Configure Arbitrary Frequency FUNCGEN_ConfigureArbFrequency
Arbitrary Sequence Output
 Query Arb Sequence Capabilities FUNCGEN_QueryArbSeqCapabilities
 Create Arbitrary Sequence FUNCGEN_CreateArbSequence
 Configure Arbitrary Sequence FUNCGEN_ConfigureArbSequence
 Clear Arbitrary Sequence FUNCGEN_ClearArbSequence
 Clear Arbitrary Memory FUNCGEN_ClearArbMemory
Triggering
 Configure Trigger Source FUNCGEN_ConfigureTriggerSource
Software Triggering
 Send Software Trigger FUNCGEN_SendSoftwareTrigger
Burst Configuration
 Configure Burst Count FUNCGEN_ConfigureBurstCount
Utility Functions
 Import Waveform Data FUNCGEN_ImportWaveformData
 Reset FUNCGEN_Reset
TS-PFG Specific Functions
 Configure Trigger Delay FUNCGEN_ConfigureTriggerDelay
 Configure Filter FUNCGEN_ConfigureFilter
 Configure Arbitrary Marker FUNCGEN_ConfigureArbMarker
 Configure Marker Output FUNCGEN_ConfigureMarkerOutput
 Configure Coupling Relays FUNCGEN_ConfigureCouplingRelays
 Configure Ground Relay FUNCGEN_ConfigureGroundRelay
Cleanup FUNCGEN_Cleanup

7.1.7 Operator Interface Library

7.1.7.1 General

Name of the dynamic link library (DLL): OPERINT.DLL

Name of the help file: OPERINT.HLP, OPERINT.CHM

Generic Test Libraries

Test LibrariesR&S®GTSL

67User Manual 1143.6450.42 ─ 22

License required R&S TS-LBAS

Supported devices: not usable

The Operator Interface Library offers functions for interaction between the TestStand
sequence and the R&S GTSL Operator Interface:

● Display of Banners and other Information
● Dialog Boxes
● User Input

If the R&S GTSL Operator Interface is not available (e.g. when a sequence is started
from the TestStand Sequence Editor), the dialog boxes are replaced by simple pop-up
dialogs.

This library requires TestStand as test executive, it cannot be run in other environ-
ments.

7.1.7.2 Entries in PHYSICAL.INI

No entries

7.1.7.3 Entries in APPLICATION.INI

Section [bench->...]

Keyword Value Description

Trace 0 / 1 Optional entry

0 : Disable tracing

1 : Enable tracing

Default: 0

7.1.7.4 Functions

Setup OPERINT_Setup
Library Version OPERINT_Lib_Version
Information
 Get Associated Channel Number OPERINT_Get_Channel
Display Functions
 Show Banner OPERINT_Show_Banner
 Show Customized Banner OPERINT_Show_Custom_Banner
 Hide Banner OPERINT_Hide_Banner
 Customized Dialog OPERINT_Custom_Dialog
 Customized Input Prompt OPERINT_Custom_Prompt
 Display Info Line OPERINT_Display_Info
Cleanup OPERINT_Cleanup

Generic Test Libraries

Test LibrariesR&S®GTSL

68User Manual 1143.6450.42 ─ 22

7.1.8 Resource Manager Library

7.1.8.1 General

Name of the dynamic link library (DLL): RESMGR.DLL

Name of the help file: RESMGR.HLP, RESMGR.CHM

License required R&S TS-LBAS

Supported devices: not usable

The Resource Manager Library provides functions for managing the hardware used in
the test system.

7.1.8.2 Entries in PHYSICAL.INI

No entries

7.1.8.3 Entries in APPLICATION.INI

Section [Resource Manager]

Optional entry

Controls the tracing properties of the Resource Manager.

Keyword Value Description

Trace 0 / 1 Blocks the tracing function (value
= 0), enables the tracing function
(value = 1).

Default = 0

TraceFile String Defines the path and the name of
the trace file. Default = ""

TraceToScreen 0 / 1 The tracing information is dis-
played on the standard screen
(value = 1).

Default = 0

TraceTimeStamp 0 / 1 Writes the time of day at the start
of each tracing line (value = 1).

Default = 0

TraceThreadID 0 / 1 Writes the ID of the current thread
at the start of each tracing line
(value = 1).

Default = 0

Generic Test Libraries

Test LibrariesR&S®GTSL

69User Manual 1143.6450.42 ─ 22

Keyword Value Description

TraceAppend 0 / 1 Appends lines to existing trace file
(value = 1) Overwrites trace file
(value = 0, default)

TraceAutoFlush 0 / 1 Writes trace lines immediately to
disk (value =1) Buffers disk write
operations (value = 0, default)
Note that enabling this feature
may degrade application perform-
ance significantly.

7.1.8.4 Functions

Management

Setup RESMGR_Setup

Library Version RESMGR_Lib_Version

Cleanup RESMGR_Cleanup

Resource Functions

Allocate Resource RESMGR_Alloc_Resource

Free Resource RESMGR_Free_Resource

Informational

Resource Type RESMGR_Get_Resource_Type

Resource Name RESMGR_Get_Resource_Name

Get Value RESMGR_Get_Value

Compare Value RESMGR_Compare_Value

Number of Sections RESMGR_Number_Of_Sections

Nth Section Name RESMGR_Nth_Section_Name

Number of Keys RESMGR_Number_Of_Keys

Nth Key Name RESMGR_Nth_Key_Name

Key Value RESMGR_Get_Key_Value

Device Sessions

Open Session RESMGR_Open_Session

Get Session Handle RESMGR_Get_Session_Handle

Set Session Handle RESMGR_Set_Session_Handle

Close Session RESMGR_Close_Session

Open Sub-Session RESMGR_Open_SubSession

Get Session Sub-Handle RESMGR_Get_Session_SubHandle

Set Session Sub-Handle RESMGR_Set_Session_SubHandle

Close Sub-Session RESMGR_Close_SubSession

Generic Test Libraries

Test LibrariesR&S®GTSL

70User Manual 1143.6450.42 ─ 22

Dynamic memory Management

Allocate Memory RESMGR_Alloc_Memory

Get Memory Pointer RESMGR_Get_Mem_Ptr

Free Memory RESMGR_Free_Memory

Allocate Shared Memory RESMGR_Alloc_Shared_Memory

Lock Shared Memory RESMGR_Lock_Shared_Memory

Unlock Shared Memory RESMGR_Unlock_Shared_Memory

Free Shared Memory RESMGR_Free_Shared_Memory

Locking

Lock Device RESMGR_Lock_Device

Unlock Device RESMGR_Unlock_Device

Support Functions

Read System Identification RESMGR_Read_ROM

Enable Tracing RESMGR_Enable_Tracing

Trace RESMGR_Trace

Set Trace Flag RESMGR_Set_Trace_Flag

Get Trace Flag RESMGR_Get_Trace_Flag

7.1.9 Self Test Support Library

7.1.9.1 General

Name of the dynamic link library (DLL): SFT.DLL

Name of the help file: SFT.HLP, SFT.CHM

License required R&S TS-LBAS

Supported devices Self Test Multimeter: National Instruments

NI4060 with Self Test Matrix Card R&S TS-PMA

or

Self Test Multimeter with integrated matrix R&S TS-
PSAM

The self test support library contains functions which are common for all self test mod-
ules like measurements, report generation, run-time state handling and operator dialog
functions.

7.1.9.2 Entries in PHYSICAL.INI

Section [device->...]

Generic Test Libraries

Test LibrariesR&S®GTSL

71User Manual 1143.6450.42 ─ 22

Keyword Value Description

SFTDLL String Mandatory entry

File name of the self test DLL

R&S TS-PAM : sftmpam.dll
R&S TS-PDFT : sftmpdft.dll
R&S TS-PFG : sftmpft.dll
R&S TS-PICT : sftmpict.dll
R&S TS-PIO2: sftmpio2.dll
R&S TS-PMA : sftmpma.dll
R&S TS-PMB : sftmpmb.dll
R&S TS-PRL1 : sftmprl1.dll
R&S TS-PSAM : sftmpsam.dll
R&S TS-PSM1 : sftmpsm1.dll
R&S TS-PSM2 : sftmpsm2.dll
R&S TS-PSM3 : sftmpsm3.dll
R&S TS-PSM4 : sftmpsm4.dll
R&S TS-PSM5 : sftmpsm5.dll
R&S TS-PSU : sftmpsu.dll
R&S TS-PSU12 : sftmpsu.dll
R&S TS-PSYS : sftmpsys.dll

SFTPrefix String Mandatory entry

Prefix for the self test functions,
without underscore. This entry is
case sensitive:

R&S TS-PAM : SFTMPAM

R&S TS-PDFT : SFTMPDFT

R&S TS-PFG : SFTMPFT

R&S TS-PICT : SFTMPICT

R&S TS-PIO2: SFTMPIO2

R&S TS-PMA : SFTPMA

R&S TS-PMB : SFTMPMB

R&S TS-PRL1 :SFTMPRL1

R&S TS-PSAM : SFTMPSAM

R&S TS-PSM1 : SFTMPSM1

R&S TS-PSM2 : SFTMPSM2

R&S TS-PSM3 : SFTMPSM3

R&S TS-PSM4 : SFTMPSM4

R&S TS-PSM5 : SFTMPSM5

R&S TS-PSU : SFTMPSU

R&S TS-PSU12 : SFTMPSU

R&S TS-PSYS : SFTMPSYS

Example:

Generic Test Libraries

Test LibrariesR&S®GTSL

72User Manual 1143.6450.42 ─ 22

[device->RelayCard1]
 Description = TS-PRL1 in Slot 7
 Type = PRL1
 ResourceDesc = PXI0::1::17
 DriverDll = rsprl1.dll
 DriverPrefix = rsprl1
 SFTDll = SFTMPRL1.DLL
 SFTPrefix = SFTMPRL1

Example of a physical layer .ini file for a R&S CompactTSVP system:

If the recommended self test hardware is installed, the following device section must
be added:

[device->psam]
 Description = "TS-PSAM, source and measurement module, Slot 3"
 Type = PSAM
 ResourceDesc = PXI1::15::0::INSTR
 DriverDll = rspsam.dll
 DriverPrefix = rspsam
 DriverOption = "Simulate=0,RangeCheck=1"
 ; Note: the self test DLL and prefix keywords must be removed for the
 ; first TS-PSAM module, because it is already tested in the
 ; basic self test.
 ;SFTDll = sftmpsam.dll
 ;SFTPrefix = SFTMPSAM

The type of the digital multimeter and the self test switch device must be "PSAM".
The "ResourceDesc" keys must match your hardware configuration.
Because this device is the self test instrumentation and under control of the self test
library, this sections must not have the keys "SFTDll" and "SFTPrefix".

In order to test a Rohde & Schwarz CompactTSVP module (R&S TS-PFG, R&S TS-
PMB, ...) the device section of these modules must contain the entries "SFTDll and
SFTPrefix". The following sections show the entries for a R&S TS-PFG and a R&S TS-
PMB module:

[device->pfg]
 Description = "TS-PFG, arbitrary function generator module, Slot 4"
 Type = PFG
 ResourceDesc = PXI1::14::0::INSTR
 DriverDll = rspfg.dll
 DriverPrefix = rspfg
 SFTDll = sftmpfg.dll
 SFTPrefix = SFTMPFG

 [device->pmb]
 Description = "TS-PMB, matrix module, Slot 10"
 Type = PMB
 ResourceDesc = CAN0::0::1::10

Generic Test Libraries

Test LibrariesR&S®GTSL

73User Manual 1143.6450.42 ─ 22

 DriverDll = rspmb.dll
 DriverPrefix = rspmb
 SFTDll = sftmpmb.dll
 SFTPrefix = SFTMPMB

The values of the keys "SFTPrefix" and "DriverPrefix" are case sensitive.

The files CompactTSVP_physical.ini and
SFT_CompactTSVP_application.ini in the GTSL\Configuration subdirectory
are an example for the self test configuration of a R&S CompactTSVP test system.

Example of a physical layer .ini file for a Classic TSVP system:

If the recommended self test hardware is installed, the following two device sections
must be added:

[device->SftRelayCard]
 Description = "Self Test Matrix Card"
 Type = PMA1
 ResourceDesc = PXI2::11::0::INSTR
 DriverPrefix = rspma
 DriverDll = rspma.dll
 DriverOption = "Simulate=0,DriverSetup=MCR:FFFFFFF6 CRAuto:1 BusSel:0"

 [device->SftDMM]
 Description = "Self Test Digital Multimeter"
 type = NI4060
 ResourceDesc = DAQ::2::INSTR
 DriverPrefix = niDMM
 DriverDll = nidmm_32.dll
 DriverOption = "Simulate=0,DriverSetup=PXI-4060"
 PowerLineFrequency = 50

The type of the switch device must be "PMA1"
The DriverSetup attribute in the DriverOption string of the PMA1 card must have the
parameter setting "CRAuto:1"
The type of the digital multimeter must be "NI4060"
The "ResourceDesc" keys must match your hardware configuration
Because these two devices are the self test instrumentation and under control of the
self test library these sections must not have the keys "SFTDll" and "SFTPrefix".

In order to test a Rohde & Schwarz TSVP module (R&S TS-PRL1, R&S TS-PMA) the
device section of these cards must contain the new entries "SFTDll and SFTPrefix".
The following sections show the entries for a R&S TS-PRL1 and a R&S TS-PMA card:

[device->RelayCard1]
 Description = "Relay Card 1"
 Type = PRL1

Generic Test Libraries

Test LibrariesR&S®GTSL

74User Manual 1143.6450.42 ─ 22

 ResourceDesc = PXI3::10::0::INSTR
 DriverPrefix = rsprl1
 DriverDll = rsprl1.dll
 DriverOption = "Simulate=0"
 SFTDll = SFTMPRL1.DLL
 SFTPrefix = SFTMPRL1

 [device->MatrixCard1]
 Description = "Matrix Card 1"
 Type = PMA1
 ResourceDesc = PXI1::11::0::INSTR
 DriverPrefix = rspma
 DriverDll = rspma.dll
 DriverOption = "Simulate=0,DriverSetup=MCR:FFFFFFF6 CRAuto:0 BusSel:0"
 SFTDll = SFTMPMA.DLL
 SFTPrefix = SFTMPMA

The values of the keys "SFTPrefix" and "DriverPrefix" are case sensitive
The DriverSetup attribute in the DriverOption string of a PMA card must have the
parameter setting "CRAuto:0" for self test! This can also be configured in the self test
application.ini file.

The files demo_physical.ini and sft_7100_application.ini in the
GTSL\Configuration subdirectory are an example for the self test configuration of a
single channel TS7100 test system.

7.1.9.3 Entries in APPLICATION.INI

Section [bench->SFT]

Keyword Value Description

DigitalMultimeter String Mandatory entry

Bench device link to the device
entry of the multimeter:

For R&S TSVP: National Instru-
ments DMM 4060

For R&S CompactTSVP: R&S
TS-PSAM

SwitchDevice String Mandatory entry

Bench device link to the device
entry of the matrix for the multi-
meter (R&S TS-PMA1)

Trace 0 / 1 Optional entry

Enables/disables tracing, default
= 0

Section [SftOptions]

Generic Test Libraries

Test LibrariesR&S®GTSL

75User Manual 1143.6450.42 ─ 22

Keyword Value Description

SystemName String The Name of the system to be
tested. This Name appears in the
header of the self test report.

Default "-"

SFTFixture 0 / 1 1 : TSVP self test fixture is con-
nected to the modules

0 : no SFT fixture present

Default 1

ManualInterventions 0 / 1 1 : Additional tests which require
user interaction

0 : SFT runs without further inter-
action.

Default 1

ReportFile String Path and filename of report file

Default
C:\TEMP\SFT_Report.txt

ReportStyle 1 / 2 / 3 /... 1 : Only errors are reported

2 : Only a short report is gener-
ated

3 : Generates a full report all other
entries: A full report is generated

Default 1

ReportAppend 0 / 1 1 : Report is appended to existing
file

0 : Existing report file is overwrit-
ten

Default 0

SuppressDialog 0 / 1 1 : Options dialog is not displayed

0 : Options dialog is displayed

Default 0

StopOnFirstFailure 0 / 1 1 : SFT is aborted on first test
case failure

0 : SFT is not aborted on first test
case failure

Default 0

Section [SftParts]

PartX <PartName>, <BenchName>,<SelectFlag>

The keys have the format "PartX". Where X ist a continuous counter starting at 1. The
values are comma separated lists with the following entries:

Generic Test Libraries

Test LibrariesR&S®GTSL

76User Manual 1143.6450.42 ─ 22

Part Name An arbitrary name for a part to test. All parts must
have a unique name.

Bench Name Name of the corresponding bench

Select Flag Default value for the selection

1: Part selected

0: Part not selcted

7.1.9.4 Functions

Management
 Setup SFT_Setup
 Library Version SFT_Lib_Version
 Cleanup SFT_Cleanup
 Measurement
 Dmm_reset SFT_Dmm_reset
 Dmm_Connect SFT_Dmm_Connect
 Dmm_Disconnect SFT_Dmm_Disconnect
 Dmm_DisconnectAll SFT_Dmm_DisconnectAll
 Dmm_MeasDelay SFT_Dmm_MeasDelay
 Dmm_WaitForDebounce SFT_Dmm_WaitForDebounce
 Dmm_ConfigureMeasurement SFT_Dmm_ConfigureMeasurement
 Dmm_ConfigureAutoZeroMode SFT_Dmm_ConfigureAutoZeroMode
 Dmm_Read SFT_Dmm_Read
 Dmm_AverageMeasurement SFT_Dmm_AverageMeasurement
 Dmm_checkForExternVoltage SFT_Dmm_checkForExternVoltage
 Dmm_MeasureContact SFT_Dmm_MeasureContact
 Dmm_MeasureIsolation SFT_Dmm_MeasureIsolation
 Trigger
 Dmm_TriggerConfSignal SFT_Dmm_TriggerConfSignal
 Dmm_ConfigureTrigger SFT_Dmm_ConfigureTrigger
 Dmm_EnableTriggerline SFT_Dmm_EnableTriggerline
 Dmm_Initiate SFT_Dmm_Initiate
 Dmm_trig_SendSoftwareSignal SFT_Dmm_trig_SendSoftwareSignal
 Dmm_Fetch SFT_Dmm_Fetch
 DC_Source
 dcs_ConfigureVoltageLevel SFT_dcs_ConfigureVoltageLevel
 dcs_ConfigureCurrentLimitRange SFT_dcs_ConfigureCurrentLimitRange
 dcs_ConfigureCurrentLimit SFT_dcs_ConfigureCurrentLimit
 dcs_ConfigureOutputEnabled SFT_dcs_ConfigureOutputEnabled
 dcs_QueryOutputState SFT_dcs_QueryOutputState
 CNX
 cnx_ConfigureSwitches SFT_cnx_ConfigureSwitches
 cnx_Gnd SFT_cnx_Gnd
 cnx_DmmToGnd SFT_cnx_DmmToGnd
 cnx_Matrix SFT_cnx_Matrix
 cnx_Coupling SFT_cnx_Coupling
 Report
 CommentAddItem SFT_CommentAddItem

Generic Test Libraries

Test LibrariesR&S®GTSL

77User Manual 1143.6450.42 ─ 22

 WarningAddItem SFT_WarningAddItem
 ErrorAddItem SFT_ErrorAddItem
 ResultTextAddItem SFT_ResultTextAddItem
 ProgramErrorAddItem SFT_ProgramErrorAddItem
 TableAddItem SFT_TableAddItem
 TableColumnSetAttrInt SFT_TableColumnSetAttrInt
 TableColumnSetAttrString SFT_TableColumnSetAttrString
 TableCellSetValueInt SFT_TableCellSetValueInt
 TableCellSetValueDouble SFT_TableCellSetValueDouble
 TableCellSetValueString SFT_TableCellSetValueString
 ResultTabAddItem SFT_ResultTabAddItem
 ResultTabLineGetAttrInt SFT_ResultTabLineGetAttrInt
 ResultTabLineSetAttrDouble SFT_ResultTabLineSetAttrDouble
 ResultTabLineSetAttrString SFT_ResultTabLineSetAttrString
 ResultTabSetAttrInt SFT_ResultTabSetAttrInt
 ResultTabColumnSetAttrInt SFT_ResultTabColumnSetAttrInt
 ResultTabLineCalcAttrStatus SFT_ResultTabLineCalcAttrStatus
 Run-time State
 OptionGetAttrInt SFT_OptionGetAttrInt
 PartSelect SFT_PartSelect
 PartGetAttrInt SFT_PartGetAttrInt
 PartGetAttrString SFT_PartGetAttrString
 PartSetAttrInt SFT_PartSetAttrInt
 ComponentAddItem SFT_ComponentAddItem
 ComponentSelect SFT_ComponentSelect
 ComponentSelectByIndex SFT_ComponentSelectByIndex
 ComponentSetAttrInt SFT_ComponentSetAttrInt
 ComponentGetAttrInt SFT_ComponentGetAttrInt
 ComponentSetAttrString SFT_ComponentSetAttrString
 ComponentGetAttrString SFT_ComponentGetAttrString
 TestCaseAddItem SFT_TestCaseAddItem
 TestCaseSelect SFT_TestCaseSelect
 TestCaseSelectByIndex SFT_TestCaseSelectByIndex
 TestCaseSetAttrInt SFT_TestCaseSetAttrInt
 TestCaseGetAttrInt SFT_TestCaseGetAttrInt
 TestCaseSetAttrString SFT_TestCaseSetAttrString
 Dialog
 ComponentShowDialog SFT_ComponentShowDialog
 DlgProgressPrintInfo SFT_DlgProgressPrintInfo
 Utility
 Dmm_Test SFT_Dmm_Test
 Dmm_writeRegister SFT_Dmm_writeRegister
 Dmm_readRegister SFT_Dmm_readRegister

Generic Test Libraries

Test LibrariesR&S®GTSL

78User Manual 1143.6450.42 ─ 22

7.1.10 Signal Analyzer Library

7.1.10.1 General

Name of the dynamic link library (DLL): SIGANL.DLL

Name of the help file: SIGANL.HLP, SIGANL.CHM

License required R&S TS-LBAS

Supported devices: R&S TS-PAM, Analyzer Module

Any other module with IVI Scope compliant driver.

The Signal Analyzer Library provides configuration and measurement functions for
waveform analyzers / digital oscilloscopes compliant with the IVI-4.1 IviScope instru-
ment class. Furthermore it offers generic waveform analysis and utility functions.

These functions include:

● Channel configuration
● Time base configuration
● Trigger configuration
● Waveform acquisition

● Waveform parameter measurement (Average, RMS)
● Frequency measurement
● Event counting (Slope, Peak)
● Time measurement between events
● Waveform comparison
● Calculation of reference waveforms
● Waveform import/export as file
● Waveform display

7.1.10.2 Entries in PHYSICAL.INI

Section [device->...]

Keyword Value Description

Type String Mandatory entry

for R&S TS-PAM: PAM

for other IviScope compliant
instruments: IVI_SCOPE

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

PXI[segment number]::[device
number]::[function]::INSTR

Generic Test Libraries

Test LibrariesR&S®GTSL

79User Manual 1143.6450.42 ─ 22

Keyword Value Description

DriverPrefix String Mandatory entry

prefix for the IVI driver functions,
without underscore

for R&S TS-PAM: rspam

for others: driver dependent

Driver DLL String Mandatory entry

File name of the driver DLL

for R&S TS-PAM: rspam.dll

for others: driver dependent

DriverOption String Optional entry

Option string being passed to the
device driver during the Driver's
InitWithOptions function. See the
online help file for the appropriate
device driver.

7.1.10.3 Entries in APPLICATION.INI

Section [bench->...]

Keyword Value Description

SignalAnalyzer String Mandatory entry

Reference to the device entry of
the signal analyzer in
PHYSICAL.INI

Simulation 0 / 1 Optional entry

Blocks simulation of all entered
devices (value = 0).

Enables simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function (value
= 0).

Enables the tracing function
(value = 1).

Default = 0

7.1.10.4 Functions

Setup SIGANL_Setup
Library Version SIGANL_Lib_Version
Basic Instrument Operation
 Configure Acquisition Type SIGANL_ConfigureAcquisitionType
 Configure Acquisition Record SIGANL_ConfigureAcquisitionRecord
 Sample Rate SIGANL_SampleRate

Generic Test Libraries

Test LibrariesR&S®GTSL

80User Manual 1143.6450.42 ─ 22

 Actual Record Length SIGANL_ActualRecordLength
 Configure Channel SIGANL_ConfigureChannel
 Configure Chan Characteristics SIGANL_ConfigureChannelCharacteristics
 Configure Trigger SIGANL_ConfigureTrigger
 Configure Trigger Coupling SIGANL_ConfigureTriggerCoupling
 Configure Edge Trigger Source SIGANL_ConfigureEdgeTriggerSource
 Read Waveform SIGANL_ReadWaveform
 Initiate Acquisition SIGANL_InitiateAcquisition
 Acquisition Status SIGANL_AcquisitionStatus
 Abort SIGANL_Abort
 Fetch Waveform SIGANL_FetchWaveform
 TS-PAM specific functions
 Configure Coupling Relays SIGANL_ConfigureCouplingRelays
 Configure Ground Relay SIGANL_ConfigureGroundRelay
 Configure Trigger Output SIGANL_ConfigureTriggerOutput
 Enable Trigger Output SIGANL_EnableTriggerOutput
 Configure Trigger Pattern SIGANL_ConfigureTriggerPattern
 Send Software Trigger SIGANL_SendSoftwareTrigger
 Get Trigger Status SIGANL_GetTriggerStatus
 Configure Scan SIGANL_ConfigureScan
 Actual Scan SIGANL_ActualScan
 Fetch Trigger SIGANL_FetchTrigger
Waveform Measurements
 Configure Reference Levels SIGANL_ConfigureRefLevels
 Read Waveform Measurement SIGANL_ReadWaveformMeasurement
 Fetch Waveform Measurement SIGANL_FetchWaveformMeasurement
Waveform Analysis
 Find Event in Waveform SIGANL_FindWaveformEvent
 Count Events in Waveform SIGANL_CountWaveformEvents
 Get Waveform Value SIGANL_GetWaveformValue
 Calculate Limit Lines SIGANL_CalculateLimitLines
 Compare Waveform SIGANL_CompareWaveform
 Calculate Waveform Parameter SIGANL_CalculateWaveformParameter
 Calculate Frequency SIGANL_CalculateFrequency
Waveform Display
 Display Waveform in Diagram SIGANL_ShowWaveform
 Display Waveform with Marker SIGANL_ShowWaveformMarker
 Display Waveform with Limits SIGANL_ShowWaveformLimits
Utility Functions
 Reset SIGANL_Reset
 Is Invalid Waveform Element SIGANL_IsInvalidWfmElement
 Import Waveform Data SIGANL_ImportWaveformData
 Export Waveform Data SIGANL_ExportWaveformData
Cleanup SIGANL_Cleanup

Generic Test Libraries

Test LibrariesR&S®GTSL

81User Manual 1143.6450.42 ─ 22

7.1.11 Signal Routing Library

7.1.11.1 General

Name of the dynamic link library (DLL): ROUTE.DLL

Name of the help file: ROUTE.HLP, ROUTE.CHM

License required R&S TS-LSRL

Supported devices: R&S TS-PAM

R&S TS-PDFT

R&S TS-PFG

R&S TS-PIO2

R&S TS-PMB

R&S TS-PSAM

R&S TS-PSM1

R&S TS-PSM2

R&S TS-PSM3

R&S TS-PSM4

R&S TS-PSM5

R&S TS-PSU

R&S TS-PSU12

R&S TS-PSYS1

R&S TS-PSYS2

and all other switch devices that provide an IVI?C
driver of the IviSwtch class.

The Signal Routing Library makes it possible to set up complex switched connections
by means of switching commands. Switched connections can be automatically routed
by the analog measurement bus, i.e. the software searches for free analog measure-
ment bus lines and automatically switches the relays in the switching path.

Extensive switched connections can also be saved under a user-specific name and
then called in the test program.

Refer to Chapter 8, "Signal Routing", on page 102, for a detailed description of the
Signal Routing Library.

The Signal Routing Library cannot be used together with the Switch Manager.

7.1.11.2 Entries in PHYSICAL.INI

Section [device->...]

Mandatory entry

Generic Test Libraries

Test LibrariesR&S®GTSL

82User Manual 1143.6450.42 ─ 22

Describes the properties of the switch modules installed in the system.

Keyword Value Description

Type String Mandatory entry

for R&S TS-PAM:PAM

for R&S TS-PDFT:PDFT

for R&S TS-PFG: PFG

for R&S TS-PIO2: PIO2

for R&S TS-PMB: PMB

for R&S TS-PSAM: PSAM

for R&S TS-PSM1: PSM1

for R&S TS-PSM2: PSM2

for R&S TS-PSM3: PSM3

for R&S TS-PSM4: PSM4

for R&S TS-PSM5: PSM5

for R&S TS-PSU: PSU

for R&S TS-PSU12: PSU12

for R&S TS-PSYS1: PSYS1

for R&S TS-PSYS2: PSYS2

for other IviSwtch compliant
instruments : IVI_SWITCH

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form:

PXI[segment number]::
[device number]::
[function]::INSTR
CAN[board]::
[controller]::[frame]::
[slot]
GPIB[board]::
[primary address]::
[secondary address]

Generic Test Libraries

Test LibrariesR&S®GTSL

83User Manual 1143.6450.42 ─ 22

Keyword Value Description

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions
for

R&S TS-PAM: rspam

for R&S TS-PDFT: rspdft

for R&S TS-PFG: rspfg

for R&S TS-PIO2: rspio2

for R&S TS-PMB: rspmb

for R&S TS-PSAM: rspsam

for R&S TS-PSM1: rspsm1

for R&S TS-PSM2: rspsm2

for R&S TS-PSM3: rspsm3

for R&S TS-PSM4: rspsm4

for R&S TS-PSM5: rspsm5

for R&S TS-PSU: rspsu

for R&S TS-PSU12: rspsu

for R&S TS-PSYS1: rspsys

for R&S TS-PSYS2: rspsys

for others: driver dependent

Generic Test Libraries

Test LibrariesR&S®GTSL

84User Manual 1143.6450.42 ─ 22

Keyword Value Description

DriverDLL String Mandatory entry

File name of the driver DLL

for R&S TS-PAM: rspam.dll
for R&S TS-PDFT: rspdft.dll
for R&S TS-PFG: rspfg.dll
for R&S TS-PIO2: rspio2.dll
for R&S TS-PMB: rspmb.dll
for R&S TS-PSAM: rspsam.dll
for R&S TS-PSM1: rspsm1.dll
for R&S TS-PSM2: rspsm2.dll
for R&S TS-PSM3: rspsm3.dll
for R&S TS-PSM4: rspsm4.dll
for R&S TS-PSM5: rspsm5.dll
for R&S TS-PSU: rspsu.dll
for R&S TS-PSU12: rspsu.dll
for R&S TS-PSYS1: rspsys.dll
for R&S TS-PSYS2: rspsys.dll
for others: driver dependent

DriverOption String Optional entry

Option string being passed to the
device driver during the driver's
InitWithOptions function. See the
online help file for the appropriate
device driver.

NOTE:

For R&S TS-PMB modules, the
option "DriverSetup=CRAuto:1"
must not be used.

Section [device->ABUS]

Mandatory entry

Device section for the analog bus.

Keyword Value Description

Type String Mandatory entry

AB

Section [io_channel->system]

Optional entry

The system channel table contains a list of user-specific channel names which are
assigned to the physical device names and to the physical device channel names. The
defined names apply to all test applications running on the system.

Generic Test Libraries

Test LibrariesR&S®GTSL

85User Manual 1143.6450.42 ─ 22

Keyword Value Description

<logical channel name> String Physical channel description in
the combination <device name>!
<physical device channel name>

7.1.11.3 Entries in APPLICATION.INI

Section [bench->...]

Mandatory entry

Contains a list of switch devices, options and links to the channel table and switch set-
tings.

Keyword Value Description

SwitchDevice<i> String Mandatory entry

Refers to a device entry section of
a switch device in
PHYSICAL.INI. <i> stands for a
number from 1,2,3,...,n. The num-
bers must be assigned in ascend-
ing order without gaps. <i> may
be omitted in case it is 1.

AnalogBus String Mandatory entry

Refers to the device section of the
analog bus in PHYSICAL.INI.

AppChannelTable String Mandatory entry

Refers to a section [io_channel-
>...] with defined channel names
in APPLICATION.INI.

SwitchSettings String Optional entry

Refers to a section [switch->...]
with defined switch settings in
APPLICATION.INI.

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0).

Enables simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0).

Enables the tracing function of the
library (value = 1).

Default = 0

Generic Test Libraries

Test LibrariesR&S®GTSL

86User Manual 1143.6450.42 ─ 22

Keyword Value Description

ChannelTableCaseSensitive 0 / 1 Optional entry

The channel names in the chan-
nel table are treated case-sensi-
tive (value = 1) or case-insensitive
(value = 0).

Default = 0

SignalRoutingDisplay 0 / 1 Optional entry

Displays a window with actual sig-
nal routing information (value=1).

Default = 0

Section [io_channel->...]

Mandatory entry

Contains a list of user-specific channel names which are assigned to the physical
device names and to the physical device channel names. The defined names apply
only to the relevant application. For details about channel name syntax see Chap-
ter 8.3.4, "Channel tables", on page 111.

Keyword Value Description

<logical channel name> String Physical channel description in
the combination <device name>!
<physical device channel name>

<logical channel name> String Logical channel name from the
section [io_channel->system] from
PHYSICAL.INI.

Section [switch->...]

Optional entry

Contains a list of user-specific switch setting names which are assigned to signal rout-
ing command strings. Refer to Chapter 8.3.4, "Channel tables", on page 111 for
details.

Keyword Value Description

#<switch setting name> String Signal routing command

7.1.11.4 Functions

Setup ROUTE_Setup
Library Version ROUTE_Lib_Version
Signal Routing
 Execute ROUTE_Execute
Cleanup ROUTE_Cleanup

Generic Test Libraries

Test LibrariesR&S®GTSL

87User Manual 1143.6450.42 ─ 22

7.1.12 Switch Manager Library

7.1.12.1 General

Name of the dynamic link library (DLL): SWMGR.DLL

Name of the help file: SWMGR.HLP, SWMGR.CHM

License required R&S TS-LBAS

Supported devices: R&S TS-PAM

R&S TS-PDFT

R&S TS-PFG

R&S TS-PIO2

R&S TS-PMA

R&S TS-PMB

R&S TS-PRL0

R&S TS-PRL1

R&S TS-PSAM

R&S TS-PSM1

R&S TS-PSM2

R&S TS-PSU

R&S TS-PSU12

and all other switch devices that provide an IVI-C
driver of the IviSwtch class.

The Switch Manager Library provides functions for the switching of signals. It controls
the device drivers of the relevant switching modules (e.g. R&S TS-PRL1, R&S TS-
PMA). The Test Library changes switch requests with channel names (standard I/O
channels or system/application specific channels) into calls to the device drivers of the
existing switch modules.

7.1.12.2 Entries in PHYSICAL.INI

Section [device->...]

Mandatory entry

Describes the properties of the switch cards installed in the system.

Generic Test Libraries

Test LibrariesR&S®GTSL

88User Manual 1143.6450.42 ─ 22

Keyword Value Description

Type String Mandatory entry

pam = R&S TS-PAM Analyzer
Module

pdft = R&S TS-PDFT Digital
Functional Test Module

pfg = R&S TS-PFG Function Gen-
erator Module

pio2 = R&S TS-PIO2 Analog/Digi-
tal IO Module 2

pma1 = R&S TS-PMA Matrix
Module with R&S TS-PMA1 Relay
Modules

pma2 = R&S TS-PMA Matrix
Module with R&S TS-PMA2 Relay
Modules

pmb = R&S TS-PMB Matrix Mod-
ule prl0 = R&S TS-PRL0 Univer-
sal Relay Module

prl1 = R&S TS-PRL1 Universal
Relay Module

psam = R&S TS-PSAM Analog
Source and Measurement Module

psm1 = R&S TS-PSM1 Power
Switch Module

psm2 = R&S TS-PSM2 Multiplex/
Switch Module 2

psu = R&S TS-PSU Power Sup-
ply/Load Module

psu12 = R&S TS-PSU12 Power
Supply/Load Module 12V

ivi_switch = any other switching
module or any other switchpanel
card with an IVI device driver.

ResourceDesc String Mandatory entry

VISA device properties and
device description in the form:

PXI[segment number]::
[device number]::
[function]::INSTR
CAN[board]::
[controller]::[frame]::
[slot]

Generic Test Libraries

Test LibrariesR&S®GTSL

89User Manual 1143.6450.42 ─ 22

Keyword Value Description

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions

R&S TS-PAM: rspam

R&S TS-PDFT: rspdft

R&S TS-PFG: rspfg

R&S TS-PIO2: rspio2

R&S TS-PMA: rspma

R&S TS-PMB: rspmb

R&S TS-PRL0: rsprl0

R&S TS-PRL1: rsprl1

R&S TS-PSAM: rspsam

R&S TS-PSM1: rspsm1

R&S TS-PSM2: rspsm2

R&S TS-PSU: rspsu

R&S TS-PSU12: rspsu

Other designations: Dependent
on the drivers used

Driver DLL String Mandatory entry

File name of the driver DLL

R&S TS-PAM: rspam.dll
R&S TS-PDFT: rspdft.dll
R&S TS-PFG: rspfg.dll
R&S TS-PIO2: rspio2.dll
R&S TS-PMA: rspma.dll
R&S TS-PMB: rspmb.dll
R&S TS-PRL0: rsprl0.dll
R&S TS-PRL1: rsprl1.dll
R&S TS-PSAM: rspsam.dll
R&S TS-PSM1: rspsm1.dll
R&S TS-PSM2: rspsm2.dll
R&S TS-PSU: rspsu.dll
R&S TS-PSU12: rspsu.dll
Other designations: Dependent
on the drivers used

DriverOption String Optional entry

Optional indications which are
passed to the device driver during
the Driver_Init function. See the
online help of the relevant switch
device drivers.

Section [device->ABUS]

Mandatory entry

Device section for the analog bus.

Generic Test Libraries

Test LibrariesR&S®GTSL

90User Manual 1143.6450.42 ─ 22

Keyword Value Description

Type String ab = Analog Bus

Section [io_channel->system]

Optional entry

Contains a list of user-specific channel names which are assigned to the physical
device names and to the physical device channel names. The defined names apply to
all test applications running on the system.

Keyword Value Description

<user-defined name> String Physical channel description in
the combination <device name>!
<device channel name>

7.1.12.3 Entries in APPLICATION.INI

Section [bench->...]

Mandatory entry

Contains a list of switch devices

Keyword Value Description

SwitchDevice<i> String Mandatory entry

Refers to a section with switch
devices in PHYSICAL.INI
<i> stands for a number from
1,2,3,...,n. The numbers must be
assigned in ascending order with-
out gaps.

<i> may be omitted in the case it
is 1.

AnalogBus String Optional entry

Refers to the device section of the
analog bus in PHYSICAL.INI.

AppChannelTable String Optional entry

Refers to a section with defined
channel names in
APPLICATION.INI.

Simulation 0 / 1 Optional entry

Blocks simulation of all entered
devices (value = 0). Enables sim-
ulation of the entered devices
(value = 1).

Generic Test Libraries

Test LibrariesR&S®GTSL

91User Manual 1143.6450.42 ─ 22

Keyword Value Description

Trace 0 / 1 Optional entry

Blocks the tracing function (value
= 0), enables the tracing function
(value = 1).

Default = 0

ChannelTableCase Sensitive 0 / 1 Optional entry

The channel names in the chan-
nel table are treated case-sensi-
tive (value = 1) or case-insensitive
(value = 0).

Section [io_channel->...]

Optional entry

Contains a list of user-specific channel names which are assigned to the physical
device names and to the physical device channel names. The defined names apply
only to the relevant application. For details about channel name syntax see Chap-
ter 8.3.4, "Channel tables", on page 111.

Keyword Value Description

<user-defind name> String Physical channel description in
the combination <device name>!
<device channel name>

<user-defind name> String Channel names from the list
[io_channel->system] from the
PHYSICAL.INI.

7.1.12.4 Functions

Management

Setup SWMGR_Setup

Library Version SWMGR_Lib_Version

Cleanup SWMGR_Cleanup

Configuration Functions

Configure Coupling Mode SWMGR_ConfigureCouplingMode

Configure Coupling Relays SWMGR_ConfigureCouplingRelays

Route Functions

Connect Channels SWMGR_Connect

Disconnect Channels SWMGR_Disconnect

Disconnect All Channels SWMGR_DisconnectAll

Generic Test Libraries

Test LibrariesR&S®GTSL

92User Manual 1143.6450.42 ─ 22

Switch Is Debounced? SWMGR_IsDebounced

Wait For Debounce SWMGR_WaitForDebounce

7.1.13 Utility Library

7.1.13.1 General

Name of the dynamic link library (DLL): UTIL.DLL

Name of the help file: UTIL.HLP, UTIL.CHM

License required R&S TS-LBAS

Supported devices: not usable

Miscellaneous utility functions.

7.1.13.2 Entries in PHYSICAL.INI

No entries

7.1.13.3 Entries in APPLICATION.INI

No entries

7.1.13.4 Functions

Library Version UTIL_Lib_Version
 Information
 GTSL Version UTIL_GTSL_Version
 GTSL Registry Value UTIL_GTSL_Registry_Value
 Time Functions
 Delay (obsolete) UTIL_Delay
 High-resolution Timer
 Sleep UTIL_Hrestim_Sleep
 Sleep Until UTIL_Hrestim_Sleep_Until
 Get Time Stamp UTIL_Hrestim_Time_Stamp
 Get Timer Resolution UTIL_Hrestim_Resolution
 TSVP Module Information
 Module Search UTIL_Module_Search
 Sort Module List UTIL_Module_Sort_List
 Get Attribute (Integer) UTIL_Module_Get_Attribute_Int
 Get Attribute (String) UTIL_Module_Get_Attribute_String
 Free Module List UTIL_Module_Free_List
 HTML Help

Generic Test Libraries

Test LibrariesR&S®GTSL

93User Manual 1143.6450.42 ─ 22

 Show HTML Help UTIL_Show_Html_Help
 Close HTML Help UTIL_Close_Html_Help

7.2 In-Circuit Test Libraries

For further information on the In-Circuit-Test, R&S EGTSL and R&S IC-Check see
Software Description Enhanced Generic Test Software Library R&S EGTSL and Soft-
ware Description Generic Test Software Library R&S IC-Check.

7.2.1 IC-Check Library

7.2.1.1 General

Name of the dynamic link library (DLL): ICCHECK.DLL

Name of the help file: ICCHECK.HLP, ICCHECK.CHM

License required R&S TS-LBAS and R&S TS-LICC

Supported devices: R&S TS-PMB Matrix Module R&S TS-PSAM Source
and Measurement Module

The IC-Check Test Library offers functions for the IC check using the R&S GTSL soft-
ware and the R&S TS-PSAM and R&S TS-PMB modules. The functions allow to

● load, run and debug ICC programs
● generate a report

7.2.1.2 Entries in PHYSICAL.INI

Section [device->...]

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

94User Manual 1143.6450.42 ─ 22

Keyword Value Description

Type String Mandatory entry

pmb = R&S TS-PMB Matrix Mod-
ule

psam = R&S TS-PSAM Source
and Measurement Module

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

PXI[segment number]::
[device number]::
[function]::INSTR
CAN[board]::
[controller]::[frame]::
[slot]

DriverPrefix String Mandatory entry

prefix for the IVI driver functions,
without underscore

R&S TS-PMB: rspmb

R&S TS-PSAM: rspsam

DriverDll String Mandatory entry

File name of the driver DLL

R&S TS-PMB: rspmb.dll
R&S TS-PSAM: rspsam.dll

DriverOption String Optional entry

Option string being passed to the
device driver during the driver's
InitWithOptions function. See the
online help file for the appropriate
device driver.

7.2.1.3 Entries in APPLICATION.INI

Section [bench->...]

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

95User Manual 1143.6450.42 ─ 22

Keyword Value Description

ICCDevice String Mandatory entry

Refers to the device section of the
R&S TS-PSAM

SwitchDevice<i> String Mandatory entry

Refers to a device sections of a
switch device R&S TS-PMB in
PHYSICAL.INI.

<i> stands for a number from
1,2,3,...,n. The numbers must be
assigned in ascending order with-
out gaps.

<i> may be omitted in the case it
is 1.

AppChannelTable String Mandatory entry

Refers to a section with defined
channel names in
APPLICATION.INI.

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0).

Enables simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0).

Enables the tracing function of the
library (value = 1).

Default = 0

ChannelTableCaseSensitive 0 / 1 Optional entry

The channel names in the chan-
nel table are treated case-sensi-
tive (value = 1) or case-insensitive
(value = 0).

Section [io_channel->...]

Contains a list of user-specific channel names (or ATG-defined channel names) which
are assigned to the physical device names and to the physical device channel names.
The defined names apply only to the relevant application. For details about channel
name syntax see Chapter 8.3.4, "Channel tables", on page 111.

Keyword Value Description

<user-defined name> String Physical channel description in
the form: <device name>!<device
channel name>.

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

96User Manual 1143.6450.42 ─ 22

7.2.1.4 Functions

Setup ICCHECK_Setup
Cleanup ICCHECK_Cleanup
Library Version ICCHECK_Lib_Version
Program Control
Load Program ICCHECK_Load_Program
Run Program ICCHECK_Run_Program
Debug Program ICCHECK_Debug_Program
Report Generation
Write Report to File ICCHECK_Write_Report
Load Detailed Report ICCHECK_Load_Detailed_Report
Get Detailed Report Entry ICCHECK_Get_Detailed_Report_Entry
Attribute Information
Get Attribute Int ICCHECK_Get_Attribute_Int
Get Attribute Real ICCHECK_Get_Attribute_Real
Get Attribute String ICCHECK_Get_Attribute_String

7.2.2 In-Circuit-Test Library

7.2.2.1 General

Name of the dynamic link library (DLL): ICT.DLL

Name of the help file: ICT.HLP, ICT.CHM

License required R&S TS-LBAS and

R&S TS-LEGT or R&S TS-LEG2

Supported devices: R&S TS-PICT ICT Extension Module

R&S TS-PMB Matrix Module

R&S TS-PSAM Source and Measurement Module

R&S TS-PSU Power Supply / Load Module

R&S TS-PSU12 Power Supply / Load Module 12V

The in-circuit test library offers functions for the in-circuit test using the R&S GTSL soft-
ware and the R&S TS-PSAM, R&S TS-PICT, R&S TS PSU, R&S TS-PSU12 and R&S
TS-PMB modules.

The functions allow to

● load, run and debug ICT programs
● load limit files
● generate a report

7.2.2.2 Entries in PHYSICAL.INI

Section [device->...]

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

97User Manual 1143.6450.42 ─ 22

Keyword Value Description

Type String Mandatory entry

pict = R&S TS-PICT ICT Exten-
sion Module

pmb = R&S TS-PMB Matrix Mod-
ule

psam = R&S TS-PSAM Source
and Measurement Module

psu = R&S TS-PSU Power Sup-
ply/Load Module

psu12 = R&S TS-PSU12 Power
Supply/Load Module 12V

ResourceDesc String Mandatory entry

VISA resource descriptor in the
form

PXI[segment number]::
[device number]::
[function]::INSTR
CAN[board]::
[controller]::[frame]::
[slot]

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions,
without underscore:

R&S TS-PICT : rspict

R&S TS-PMB : rspmb

R&S TS-PSAM : rspsam

R&S TS-PSU: rspsu

R&S TS-PSU12: rspsu

DriverDLL String Mandatory entry

File name of the driver DLL

R&S TS-PICT : rspict.dll
R&S TS-PMB : rspmb.dll
R&S TS-PSAM : rspsam.dll
R&S TS-PSU : rspsu.dll
R&S TS-PSU12 : rspsu.dll

DriverOption String Optional entry

Option string being passed to the
device driver during the
Driver_Init function. See the
online help file for the appropriate
device driver.

7.2.2.3 Entries in APPLICATION.INI

Section [bench->...]

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

98User Manual 1143.6450.42 ─ 22

Keyword Value Description

ICTDevice1 String Mandatory entry

Refers to the device section of the
R&S TS-PSAM

ICTDevice2 String Optional entry

Refers to the device section of the
R&S TS-PICT or R&S TS-PSU /
R&S TS-PSU12

ICTDevice3 String Optional entry

Refers to the device section of the
R&S TS-PICT or R&S TS-PSU /
R&S TS-PSU12

SwitchDevice<i> String Mandatory entry

Refers to a section with switch
devices in PHYSICAL.INI.

<i> stands for a number from
1,2,3,...,n. The numbers must be
assigned in ascending order with-
out gaps.

<i> may be omitted in the case it
is 1.

AppChannelTable String Mandatory entry

Refers to a section with defined
channel names in
APPLICATION.INI.

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0). Ena-
bles simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0). Enables the
tracing function of the library
(value = 1).

Default = 0

ChannelTableCase Sensitive 0 / 1 Optional entry

The channel names in the chan-
nel table are treated case-sensi-
tive (value = 1) or case-insensitive
(value = 0).

Section [io_channel->...]

Contains a list of user-specific channel names (or ATG-defined channel names) which
are assigned to the physical device names and to the physical device channel names.
The defined names apply only to the relevant application. For details about channel
name syntax see Chapter 8.3.4, "Channel tables", on page 111.

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

99User Manual 1143.6450.42 ─ 22

Keyword Value Description

<user-defined name> String Physical channel description in
the combination <device name>!
<device channel name>

7.2.2.4 Functions

Setup ICT_Setup
Library Version ICT_Lib_Version
EGTSL Runtime Version ICT_Runtime_Version
Program Control
 Load Program ICT_Load_Program
 Run Program ICT_Run_Program
 Debug Program ICT_Debug_Program
 Unload Program ICT_Unload_Program
Report Generation
 Write Report to File ICT_Write_Report
 Load Detailed Report ICT_Load_Detailed_Report
 Get Detailed Report Entry ICT_Get_Detailed_Report_Entry
 Get Detailed Report Entry (Extended)
 ICT_Get_Detailed_Report_Entry_Ex
 Get TestStand Report Entry ICT_Get_TestStand_Report_Entry
 Transfer Report to QUOTIS ICT_Transfer_Quotis_Report
Limit Loader
 Load Limits ICT_Load_Limits
Error Handling
 Get Error Log ICT_Get_Error_Log
Cleanup ICT_Cleanup

7.2.3 Vacuum Control Library

7.2.3.1 General

Name of the dynamic link library (DLL): VACUUM.DLL

Name of the help file: VACUUM.HLP, VACUUM.CHM

License required: R&S TS-LBAS

Supported devices: R&S TS-PSYS1, System Module R&S TS-PSYS2,
System Module

The Vacuum Library offers functions for one or more vacuum control units R&S TS-
PVAC.

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

100User Manual 1143.6450.42 ─ 22

7.2.3.2 Entries in PHYSICAL.INI

Section [device->...]

Keyword Value Description

Type String Mandatory entry

psys1 = R&S TS-PSYS1, System
Module

psys2 = R&S TS-PSYS2, System
Module

ResourceDesc String Mandatory entry

resource descriptor in the form

CAN[board]::
[controller]::[frame]::
[slot]

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions,
without underscore:

R&S TS-PSYS1, R&S TS-
PSYS2 : rspsys

DriverDLL String Mandatory entry

File name of the driver DLL

R&S TS-PSYS1, R&S TS-PSYS2:
rspsys.dll

DriverOption String Optional entry

Option string being passed to the
device driver during the
Driver_Init function. See the
online help file for the appropriate
device driver.

7.2.3.3 Entries in APPLICATION.INI

Section [bench->...]

In-Circuit Test Libraries

Test LibrariesR&S®GTSL

101User Manual 1143.6450.42 ─ 22

Keyword Value Description

VacuumControl<i> String Mandatory entry

Refers to a section with devices in
PHYSICAL.INI <i> stands for a
number from 1,2,3,...,40. The
numbers must be assigned in
ascending order without gaps. <i>
may be omitted in the case it is 1.

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0). Ena-
bles simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0), enables the
tracing function of the library
(value = 1).

Default = 0

7.2.3.4 Functions

Management
 Setup VACUUM_Setup
 Library Version VACUUM_Lib_Version
 Cleanup VACUUM_Cleanup

Control
 Control VACUUM_Control
Status
 Status VACUUM_Status

In-Circuit Test Libraries

Signal RoutingR&S®GTSL

102User Manual 1143.6450.42 ─ 22

8 Signal Routing
This chapter describes switching of measurement signals in R&S CompactTSVP / R&S
PowerTSVP systems making use of the Signal Routing Library.

8.1 R&S GTSL software for switched connections

There are three libraries in R&S GTSL that can make switched connections:

● Signal Routing Library ROUTE.DLL
● Switch Manager Library SWMGR.DLL
● The library for In-Circuit Test ICT.DLL (R&S EGTSL)

All three libraries can simultaneously administer a large number of measurement, stim-
ulus, and switch modules. These different modules appear together in the test program
as a large switch panel.

8.1.1 Signal Routing Library

The Signal Routing Library makes it possible to set up complex switched connections
by means of switching commands. Switched connections can be automatically routed
by the analog measurement bus, i.e. the software searches for free analog measure-
ment bus lines and automatically switches the relays in the switching path.

Extensive switched connections can also be saved under a user-specific name and
then called in the test program.

A R&S TS-LSRL software license is required for the Signal Routing Library.

The Signal Routing Library cannot be used together with the Switch Manager.

8.1.2 Switch Manager Library

The Switch Manager Library is the predecessor of the Signal Routing Library. It is a
useful tool when compatibility is required with earlier applications created with the
Switch Manager Library. Unlike the Signal Routing Library, the Switch Manager has no
built-in "intelligence" and is not capable of routing switching paths automatically.

The Switch Manager is already included in the basic license for R&S TS-LBAS.

The Switch Manager cannot be used together with the Signal Routing Library.

R&S GTSL software for switched connections

Signal RoutingR&S®GTSL

103User Manual 1143.6450.42 ─ 22

8.1.3 ICT Library / R&S EGTSL

The In-Circuit Test Library and R&S EGTSL user interface (R&S EGTSL IDE) make
internal connections for the In-Circuit Test. They use the same entries in the configura-
tion files to do this as the two other libraries. However it is not possible to use R&S
EGTSL for general connection tasks, such as in the functional test.

8.2 Analog measurement bus concept

The R&S CompactTSVP and R&S PowerTSVP systems allow for use of a large num-
ber of measurement and stimulus modules. These modules can be connected with the
UUT (unit under test) either directly or through switch modules.

The analog measurement bus of the R&S CompactTSVP and R&S PowerTSVP sys-
tems connects measurement, stimulus, and switch modules with each other. The ana-
log measurement bus offers eight lines, which are available on all slots. In this manner,
UUT signals can be flexibly connected with the measurement and stimulus modules
through the switch modules.

Figure 8-1: Analog measurement bus concept

The following table shows an overview of modules of the R&S CompactTSVP product
line with switching elements:

Table 8-1: Modules of the R&S CompactTSVP product line

Module name Module type Analog measure-
ment bus access

Local multiplex-
ers

Special features

R&S TS-PAM Measurement mod-
ule

x x

R&S TS-PDFT Measurement/
stimulus module

 x Digital test module

R&S TS-PFG Stimulus module x

Analog measurement bus concept

Signal RoutingR&S®GTSL

104User Manual 1143.6450.42 ─ 22

Module name Module type Analog measure-
ment bus access

Local multiplex-
ers

Special features

R&S TS-PIO2 Measurement/
stimulus module

x x

R&S TS-PMB Switch module x

R&S TS-PSAM Measurement mod-
ule

x x

R&S TS-PSM1 Switch module x Power switching
module

R&S TS-PSM2 Switch module x Power switching
module

R&S TS-PSM3 Switch module x Power switching
module

R&S TS-PSM4 Switch module x Power switching
module

R&S TS-PSM5 Switch module x Power switching
module

R&S TS-PSU R&S
TS-PSU12

Stimulus module x x Power module

R&S TS-PSYS1/2 System module

With the exception of modules R&S TS-PDFT and R&S TS-PSYS, all modules provide
access to the analog measurement bus. Some modules provide local multiplexers. If
only a few signals need to be switched to test a UUT, the multiplexer in the module is
frequently sufficient. If numerous channels are involved, however, multiplexing is per-
formed by the analog measurement bus and switching modules.

The analog measurement bus consists of eight lines with identical capabilities, ABa1,
ABa2, ABb1, ABb2, ABc1, ABc2, ABd1, and ABd2. All modules with analog measure-
ment bus access can be switched to the analog measurement bus by means of cou-
pling relays. These coupling relays are located directly on the analog measurement
bus connector of the module so that the capacitive load of the analog measurement
bus resulting from the module with the coupling relay open remains minimal.

After the coupling relay, the global analog measurement bus is continued on the mod-
ule as a local analog bus. The measurement inputs or signal outputs of the relevant
module can be connected with the local analog bus by means of a relay matrix.

Analog measurement bus concept

Signal RoutingR&S®GTSL

105User Manual 1143.6450.42 ─ 22

Figure 8-2: Analog measurement bus access via coupling relay

When connecting signals via the analog measurement bus or local analog bus, please
note that they are approved only for voltages up to 125 VDC and currents up to 1 A.

Higher currents can be connected directly with the UUT through modules specially
designed for that purpose (R&S TS-PSU, R&S TS PSU12 R&S TS PSM1, R&S TS-
PSM2, R&S TS-PSM3, R&S TS-PSM4, R&S TS-PSM5).

8.3 Configuration files

A test program contains switching commands that consist of a combination of channel
names and switching operations.

The channel names in the test program correspond to names as they appear in the
test specification or in the schematics of the UUT. These names are logical channel
names. The software converts these names into physical channel names, i.e. into
channel names as they are "understood" by stimulus, measurement, or switch mod-
ules.

Physical channel names are assigned to logical channel names in a UUT-specific
channel table. This channel table is stored along with other information in a configura-
tion file. It describes how connections from the UUT with the test system are made, i.e.
it describes adapter wiring.

Using configuration files offers the advantage that the test program can concentrate on
the actual measurement task. The adapter wiring and system configuration are defined
outside of the test program in the configuration files.

Configuration files

Signal RoutingR&S®GTSL

106User Manual 1143.6450.42 ─ 22

Use of configuration files makes it possible to modify the adapter wiring or port the test
program to a system with a different configuration without having to change the test
program.

The R&S GTSL software uses two configuration files: one for the physical layer and
the other for the application layer. The general layout of these two files is described in
Chapter 5, "Configuration Files", on page 21.

8.3.1 Physical layer

For each test system there is exactly one file that describes the physical layer, i.e. the
configuration of the system. This file's name is PHYSICAL.INI and it resides in the
directory ..\GTSL\Configuration. It contains the following information:

● Which hardware modules are present in the system?
● How are the hardware modules addressed?
● What software is responsible for the hardware modules?
● Options for device drivers, for example simulation mode
● Optionally a system-specific channel table

This file must be adjusted every time a change is made to the system configuration.

8.3.1.1 Example of a PHYSICAL.INI file

The following example shows a segment of a PHYSICAL.INI file. Some entries with
no relevance to this chapter have been left out.

[device->PSAM]
Type = PSAM
ResourceDesc = PXI1::10::0::INSTR
DriverDll = rspsam.dll
DriverPrefix = rspsam
DriverOption = "Simulate=0,RangeCheck=1"

[device->PMB_10]
Type = PMB
ResourceDesc = CAN0::0::1::10
DriverDll = rspmb.dll
DriverPrefix = rspmb
DriverOption = "Simulate=0,RangeCheck=1"

[device->ABUS]
;analog measurement bus pseudo-device
;used by ROUTE, SWMGR and EGTSL
Type = AB

[io_channel->system]

Configuration files

Signal RoutingR&S®GTSL

107User Manual 1143.6450.42 ─ 22

.DMM_HI = PSAM!DMM_HI

.DMM_LO = PSAM!DMM_LO

There is a [device->Name] section for each hardware module (device). There are no
constraints on Name, but it must be unique within PHYSICAL.INI. The "Type" entry
that defines the module type must be present for each device. The "ResourceDesc"
entry must also be present. The software is able to access the module through this
entry. The only exception is the pseudo device ABUS, which stands for analog mea-
surement bus.

A system-specific channel table may optionally be present. On the left side it contains
the logical channel name as it is permitted to occur in switching commands of the test
programs. The name of the hardware module and the physical channel name in the
form expected by the device driver of the corresponding module type appear on the
right side (see Chapter 8.3.4, "Channel tables", on page 111.)

8.3.2 Application layer

This configuration file is usually created individually for each UUT or test program. It
can be assigned any name and be placed in any directory. For ease of comprehen-
sion, the file name APPLICATION.INI is used for this configuration file in the manual.
It contains the following information:

● Which hardware modules are required for the test program?
● Options for libraries, for example simulation, tracing
● The application-specific channel table

This information is combined in a bench. A bench thus defines which physical resour-
ces of the system are required for a UUT in what way.

An APPLICATION.INI file may also contain more than one bench and more than one
channel table if multiple UUTs of the same type will be tested, for example in a panel
test (see Chapter 8.3.4, "Channel tables", on page 111).

8.3.2.1 Example of an APPLICATION.INI file

[bench->test]

; hardware modules
DigitalMultimeter = device->PSAM
FunctionGenerator = device->PFG
SwitchDevice1 = device->PSAM
SwitchDevice2 = device->PMB_10
SwitchDevice3 = device->PFG
AnalogBus = device->ABUS

; options
Simulation = 0
Trace = 0

Configuration files

Signal RoutingR&S®GTSL

108User Manual 1143.6450.42 ─ 22

; link to channel table
AppChannelTable = io_channel->test

; channel table
[io_channel->test]
INPUT = PMB_10!P1
GND = PMB_10!P2
OUTPUT = PMB_10!P3
MONITOR = PMB_10!P65

In the first section, the hardware modules required for the test are listed. The various
R&S GTSL libraries recognise the devices they should work with by means of the key-
words on the left side. The right side contains references to the corresponding device
entries in PHYSICAL.INI.

The second section includes options for the R&S GTSL libraries.

The third section contains a reference to the channel table that will be used.

The channel table in the fourth section contains (on the left side) logical channel
names as they occur in the switching commands of the test program. The name of the
device and the physical channel name in the form expected by the device driver of the
corresponding module type appear on the right side.

8.3.3 Special entries for switched connections

There are three libraries in R&S GTSL that can make switched connections:

● The Signal Routing Library ROUTE.DLL (see also Chapter 7.1.11, "Signal Routing
Library", on page 81)

● The Switch Manager SWMGR.DLL (see also Chapter 7.1.12, "Switch Manager
Library", on page 87)

● The library for In-Circuit Test ICT.DLL (see also Chapter 7.2.2, "In-Circuit-Test
Library", on page 96)

All three libraries use the same entries of APPLICATION.INI in terms of switched
connections. The following table shows an overview of keywords.

Keyword Value Description

SwitchDevice<i> String Mandatory entry

Refers to a device entry section of
a switch device in
PHYSICAL.INI. <i> stands for a
number from 1,2,3,…,n. The num-
bers must be assigned in ascend-
ing order without gaps. <i> may
be omitted in case it is 1.

AnalogBus String Mandatory entry

Refers to the device section of the
analog bus in PHYSICAL.INI.

Configuration files

Signal RoutingR&S®GTSL

109User Manual 1143.6450.42 ─ 22

Keyword Value Description

AppChannelTable String Mandatory entry

Refers to a section [io_channel-
>…] with defined channel names
in APPLICATION.INI.

SwitchSettings String Optional entry

Refers to a section [switch->…]
with defined switch settings in
APPLICATION.INI.

Simulation 0 / 1 Optional entry

Blocks the simulation of the
entered devices (value = 0). Ena-
bles simulation of the entered
devices (value = 1).

Default = 0

Trace 0 / 1 Optional entry

Blocks the tracing function of the
library (value = 0). Enables the
tracing function of the library
(value = 1).

Default = 0

ChannelTableCaseSensitive 0 / 1 Optional entry

The channel names in the chan-
nel table are treated case-sensi-
tive (value = 1) or case-insensitive
(value = 0).

Default = 0

SignalRoutingDisplay 0 / 1 Optional entry

Displays a window with actual sig-
nal routing information (value=1).

Default = 0

8.3.3.1 SwitchDevice<i>

These mandatory entries are references to the corresponding device sections in
PHYSICAL.INI. Based on the mandatory "Type" entry in PHYSICAL.INI, the libra-
ries determine whether the corresponding module type is supported. The entries
ResourceDesc, DriverDLL and DriverPrefix must also be present.

The suffix <i> represents a sequential numbering, i.e. SwitchDevice1, SwitchDevice2,
etc. Instead of SwitchDevice1, SwitchDevice can also be written.

ICT Library / R&S EGTSL: Only SwitchDevice entries of type PMB are considered. All
others are ignored.

Switch Manager: The Switch Manager supports the same module types as the Signal
Routing Library plus modules R&S TS-PMA and R&S TS-PRL1 of the R&S Clas-
sicTSVP.

Configuration files

Signal RoutingR&S®GTSL

110User Manual 1143.6450.42 ─ 22

Signal Routing Library: The Signal Routing Library supports the following module
types:

Table 8-2: Module types supported by the Signal Routing Library

Type Module designation

PAM R&S TS-PAM Analyzer Module

PDFT R&S TS-PDFT Digital Functional Test Module

PFG R&S TS-PFG Function Generator Module

PIO2 R&S TS-PIO2 Analog/Digital IO Module 2

PMB R&S TS-PMB Matrix Module

PSAM R&S TS-PSAM Analog Source and Measurement
Module

PSM1 R&S TS-PSM1 Power Switching Module 1

PSM2 R&S TS-PSM2 Multiplex/Switch Module 2

PSM3 R&S TS-PSM3 Power Switching Module 3

PSM4 R&S TS-PSM4 Power Switching Module 4

PSM5 R&S TS-PSM5 Power Switching Module 5

PSU R&S TS-PSU Power Supply/Load Module

PSU12 R&S TS-PSU12 Power Supply/Load Module 12V

PSYS1 R&S TS-PSYS1 System Module

PSYS2 R&S TS-PSYS2 System Module

IVI_SWITCH Any generic switching module that provides an IVI-C
driver of the IviSwtch class

8.3.3.2 AnalogBus

This mandatory entry is a reference to the pseudo device "ABUS" of PHYSICAL.INI.

Switch Manager: The AnalogBus entry is optional. If it is not present, no connections
via the analog measurement bus are possible.

8.3.3.3 AppChannelTable

This mandatory entry is a reference to the application-specific channel table. See also
Chapter 8.3.4, "Channel tables", on page 111.

Switch Manager: The AppChannelTable entry is optional. If it is not present, switched
connections can only be made with physical channel names.

Configuration files

Signal RoutingR&S®GTSL

111User Manual 1143.6450.42 ─ 22

8.3.3.4 SwitchSettings

This optional entry is a reference to the switch settings. Switch settings are pre-defined
switching commands. They are supported only by the Signal Routing Library. Refer to
Chapter 8.4.3, "Switch settings", on page 122.

8.3.3.5 Simulation

This optional entry turns simulation mode of the libraries on and off. There is no access
to hardware in simulation mode and the device drivers are not loaded. Since the Signal
Routing Library must have access to the device drivers to search for paths, however, it
behaves differently in simulation mode. This means it is unable to report errors if con-
nections are not possible.

8.3.3.6 Trace

This optional entry turns tracing of the libraries on and off. When tracing is activated,
the libraries write information to a file or screen window during execution. The
Resource Manager library makes various options available for tracing; see Chap-
ter 7.1.8, "Resource Manager Library", on page 68.

8.3.3.7 ChannelTableCaseSensitive

This optional entry determines whether upper/lower case should be distinguished for
logical channel names. If the entry is missing or has a value of 0, there is no distinction
between upper and lower case. The channel names "Input" and "INPUT" will be trea-
ted identically.

If the relevant entry has a value of 1, "Input" and "INPUT" represent two different chan-
nels.

8.3.3.8 SignalRoutingDisplay

This optional entry indicates whether the Signal Routing Library displays a window in
which the current switched connections are represented. See also Chapter 8.4.5, "Dis-
play switched connection", on page 124.

8.3.4 Channel tables

R&S GTSL libraries for switched connections use two channel tables to assign the logi-
cal channel names used in the test program to physical channel names of the test sys-
tem:

● the application-specific channel table that is referenced in APPLICATION.INI with
the keyword "AppChannelTable".

● optionally a system-specific channel table stored in PHYSICAL.INI in the
[io_channel->system] section.

Configuration files

Signal RoutingR&S®GTSL

112User Manual 1143.6450.42 ─ 22

The Signal Routing Library and Switch Manager Library combine both tables into a
general channel table. The ICT library / R&S EGTSL loads only the application-specific
channel table.

The two tables are identical in general structure. They have an entry for each logical
channel name to assign a physical channel name to it, for example:

GND = PMB_10!P2

The logical channel name on the left side must be unique. This means that it must only
occur once in the two channel tables. The "ChannelTableCaseSensitive" option deter-
mines whether or not to distinguish between upper and lower case.

Logical channel names must be no more than 80 characters long and may only contain
the following characters:

Table 8-3: Character set for logical channel names

"A"..."Z" uppercase letter

"a"..."z" lowercase letter

"0"..."9" digit

"_" underscore

"." decimal point/period

"!" exclamation mark

"#" number sign

"$" dollar sign

"%" percent

"&" ampersand

"*" asterisk

"+" plus

"-" minus

"/" slash

"\" backslash

":" colon

"?" question mark

"@" at sign

"^" caret

"|" vertical bar

"~" tilde

"(" opening paranthesis

")" closing paranthesis

"{" opening curly brace

Configuration files

Signal RoutingR&S®GTSL

113User Manual 1143.6450.42 ─ 22

"}" closing curly brace

"[" opening square bracket

"]" closing square bracket

"<" opening angle bracket/less than

">" closing angle bracket/greater than

The physical channel name (made up of the device name and the device-specific
channel name) is on the right side. Only device names that are referenced in a
"SwitchDevice<i>" entry can be used. The "device->" prefix of this entry has been omit-
ted to make the channel table easier to read.

The device name is separated from the device-specific channel name by an exclama-
tion mark. This is a channel name that is accepted by the device driver. For the specific
name, see the device driver documentation (usually the description of function
xyz_Connect).

Although logical channel names must be unique, the same does not apply to physical
channel names. It is permissible to assign several logical channel names to the same
physical channel (alias names).

The following rules apply to physical names of analog measurement bus lines:

● The physical names of global analog measurement bus lines are ABUS!ABa1 to
ABUS!ABd2. ABUS is the pseudo device analog measurement bus of type = AB.

● The physical names of the local analog measurement bus lines are device!LABa1
to device!LABd2. In this case device stands for a device of any other type. This
rule also applies if the device driver does not accept the physical names "LABxy",
but only accepts "ABxy" (for example R&S TS-PSAM).

Example:

ABa1 = ABUS!ABa1
PSAM.LABa1 = PSAM!LABa1
PSM1.LABA1 = PSM1!LABa1

Channel attributes can optionally be assigned for channels. Channel attributes separa-
ted by commas are appended to the physical channel names, for example:

.ABa1 = ABUS!ABa1,nonrouting

Channel attributes are described in Chapter 8.4.4, "Channel attributes", on page 123.

A comment can optionally be provided for a channel. It is introduced by a semicolon.
Anything after the semicolon to the end of the line is comment:

VCC = PMB_10!P75 ; +5 V supply

8.3.4.1 System-specific channel table

The system-specific channel table is optional. It is stored in PHYSICAL.INI in the
[io_channel->system] section.

Configuration files

Signal RoutingR&S®GTSL

114User Manual 1143.6450.42 ─ 22

The channel names that are required in many test programs and are not application-
specific are defined in the system-specific channel table. Examples include

● Inputs of measuring devices, for example the DMM_HI and DMM_LO inputs of the
R&S TS-PSAM multimeter.

● Outputs of stimulus devices, for example the CH1_HI and CH1_LO outputs of the
R&S TS-PSAM function generator.

● Channels of switch modules that have a fixed connection with external devices, for
example power channels of the R&S TS-PSM1 module that are connected with
external power supplies.

The system-specific channel table thus describes the fixed wiring of the system.

To ensure that logical channel names are unique and to avoid duplicate names with
the application-specific channel table, it is recommended that all logical channel names
of the system-specific channel table begin with a period.

8.3.4.2 Application-specific channel table

The application-specific channel table is stored in APPLICATION.INI in the [io_chan-
nel->Name] section. There are no constraints on Name, but it must be unique within
APPLICATION.INI.

Channel names that are required especially for the UUT are defined in the application-
specific channel table. These are:

● Measurement points on the UUT that are connected with switch modules.
● Measurement points on the UUT that are connected with local multiplexers of mea-

surement or stimulus modules.

The application-specific channel table therefore describes the adapter wiring for the
relevant UUT.

Entries of the application-specific channel table may also contain logical names of the
system-specific channel table on the right side.

8.4 Signal Routing Library

8.4.1 Example of a switched connection

The following example demonstrates the functionality of the Signal Routing Library by
way of a simple switched connection task.

A signal is applied to the input of an amplifier and then measured at the output of the
amplifier.

Signal Routing Library

Signal RoutingR&S®GTSL

115User Manual 1143.6450.42 ─ 22

Figure 8-3: Measurement task

The PHYSICAL.INI file contains entries for devices PSAM, PFG and PMB_10. No
system channel table will be used in this example. The corresponding
APPLICATION.INI appears as follows:

[bench->test]
DigitalMultimeter = device->PSAM
FunctionGenerator = device->PFG
SwitchDevice1 = device->PSAM
SwitchDevice2 = device->PMB_10
SwitchDevice3 = device->PFG
AnalogBus = device->ABUS
AppChannelTable = io_channel->test

[io_channel->test]
; UUT channels
INPUT = PMB_10!P1
GND = PMB_10!P2
OUTPUT = PMB_10!P3
MONITOR = PMB_10!P65 ; used in later example
; system channels
GEN_HI = PFG!CH1_HI
GEN_LO = PFG!CH1_LO
DMM_HI = PSAM!DMM_HI
DMM_LO = PSAM!DMM_LO

Devices PSAM, PFG, and PMB_10 are required for switching. Therefore they are
entered as SwitchDevice<i>. The channel table contains the channel names of the
UUT and the channels within the system that will be connected with the UUT.

Devices PSAM and PFG are also used as a digital multimeter and function generator
(libraries DMM.DLL and FUNCGEN.DLL). They are therefore also entered as Digital-
Multimeter and FunctionGenerator respectively.

The following switching commands are executed to set up the switched connection:

GEN_LO > GND
GEN_HI > INPUT
GND > DMM_LO
OUTPUT > DMM_HI

For each switching command, the Signal Routing Library searches for a suitable free
analog measurement bus and sets up the following switched connection:

Signal Routing Library

Signal RoutingR&S®GTSL

116User Manual 1143.6450.42 ─ 22

Figure 8-4: Switched connection for measurement task

The corresponding test program is roughly as follows. The sections of code for han-
dling errors have been omitted for the sake of clarity:

// Variables
short errorOccurred;
long errorCode
char errorMessage[GTSL_ERROR_BUFFER_SIZE];
long resourceId;

// setup libraries
RESMGR_Setup (0, "physical.ini", "testApplication.ini",
 &errorOccurred, &errorCode, errorMessage);

ROUTE_Setup (0, "bench->test", &resourceId,
 &errorOccurred, &errorCode, errorMessage);

// connect generator and DMM
ROUTE_Execute (0, resourceId,
 "GEN_LO > GND, GEN_HI > INPUT, GND > DMM_LO, OUTPUT >DMM_HI",
 &errorOccurred, &errorCode, errorMessage);

// apply generator signal and measure output (not shown here)
// ...

// disconnect all
ROUTE_Execute (0, resourceId, "||", &errorOccurred, &errorCode,errorMessage);

// Close libraries
ROUTE_Cleanup (0, resourceId, &errorOccurred, &errorCode, errorMessage);
RESMGR_Cleanup (0, &errorOccurred, &errorCode, errorMessage);

At the beginning of the program the requiredR&S GTSL libraries are initialised. The
Resource Manager must always be called first. RESMGR_Setup loads the two configu-
ration files physical.ini and testApplication.ini. ROUTE_Setup then loads
the channel tables and prepares the hardware modules for use.

Then come the actual switching commands with a ROUTE_Execute call and the
remainder of the test program (not shown here). This part of the program can be
repeated several times if several UUTs need to be tested.

Signal Routing Library

Signal RoutingR&S®GTSL

117User Manual 1143.6450.42 ─ 22

At the end of the test program, the corresponding cleanup function must be called for
each setup function that was called at the beginning. RESMGR_Cleanup is the last
R&S GTSL function that is called.

8.4.2 Switching commands

The ROUTE_Execute function of the Signal Routing Library performs switching com-
mands. The following switching commands are possible:

Table 8-4: Simple switching commands

Switching command Function

a > b Connect channels a and b

a | b Disconnect channels a and b

a || b Disconnect all connections in the path between
channels a and b

a || Disconnect all connections previously made with
channel a.

|| Disconnect all existing connections

% Disconnect all obsolete connections

#s Make switched connection of switch setting s

#s | Break switched connection of switch setting s

#s || Break switched connection of switch setting s; all
connections along the path are disconnected.

?n Wait n milliseconds

?# Wait for debounce of all switch modules

?#n Wait for debounce of all switch modules with timeout
n milliseconds

, Delimiting character for switching commands

; Comment at the end of a switching command

a and b stand for logical channel name which must be present in the application-spe-
cific table or system channel table or for system names. s stands for the name of a
switch setting (see Chapter 8.3.3.4, "SwitchSettings", on page 111) and n stands for a
real numeric literal.

Multiple switching commands separated by commas can be combined to form a single
switching command. A comment may optionally be placed at the end of a switching
command. Comments are introduced by a semicolon.

The following compound switching commands are available to simplify entry of com-
plex switching commands. They are separated into simple commands during process-
ing as shown in the table below:

Signal Routing Library

Signal RoutingR&S®GTSL

118User Manual 1143.6450.42 ─ 22

Table 8-5: Compound switching commands

Switching command Corresponds to simple com-
mands

Function

a > b > c > d a > b, b > c, c > d Extended connection

a | b | c | d

a || b || c || d

a | b, b | c, c | d

a || b, b || c, c || d

Multiple disconnection

a * b * c * d a > b, a > c, a > d Star connection

Compound switching commands contain the same simple switching command multiple
times. It is not permitted to combine switching commands of different types to form a
compound switching command.

8.4.2.1 Channel names in switching commands

Channel names used in switching commands may be:

● Logical channel names from the application-specific channel table
● Logical channel names from the system channel table
● System names

The logical channel names are defined in the corresponding channel tables (see Chap-
ter 8.3.4, "Channel tables", on page 111).

System names are channel names that have been identified to the Signal Routing
Library without the names having to be explicitly defined in the channel tables. System
names always start with a "$" sign.

Table 8-6: System names

System names Description

$ABa1, $ABa2

$ABb1, $ABb2

$ABc1, $ABc2

$ABd1, $ABd2

System names for analog measurement bus lines of
the global analog measurement bus.

$LABa1, $LABa2

$LABb1, $LABb2

$LABc1, $LABc2

$LABd1, $LABd2

System names for the local analog measurement
bus lines of a device.

The system names for the global analog measurement bus stand for physical channel
names ABUS!ABa1, ABUS!ABa2, etc and are unique within the entire system. By con-
trast, system names of local analog measurement buses may not be assigned uniquely
to a device if multiple devices are present in the system. The assignment is based first
on the context of the switched connection command.

Signal Routing Library

Signal RoutingR&S®GTSL

119User Manual 1143.6450.42 ─ 22

Example:
DMM_HI > $LABa1 > $ABa1

Since DMM_HI is assigned to the PSAM device, i.e. the physical channel name is
PSAM!DMM_HI, $LABa1 is also assigned to the PSAM device.
$LABa1 > $LABa2

In this case no assignment can be made to a device. An error is reported.
DMM_HI > $LABa1 > INPUT

In this case the context is different on the left and right side. $LABa1 can be assigned
to either the PSAM device or the PMB_10 device. The software is not capable of
deciding which local local analog measurement bus is meant. An error is also reported
in this case.

If a logical channel name contains any special characters reserved for switching com-
mands, it must be enclosed in single quotes. This rule applies for the following charac-
ter set:

> | % * # ? $ -

8.4.2.2 Connecting channels

Command a > b connects channel a with channel b.

The connection can be routed either directly or via local and global analog measure-
ment bus lines.

There is a direct connection present if channel a and channel b can be connected by
closing a single relay. Direct connections must have either both channels on the same
device or else a global analog measurement bus as one of the two channels.

The Signal Routing Library is able to set up complex switched connections via auto-
matic routing. Local and global analog measurement bus lines are used for automatic
routing to connect the two channels together.

An automatically routed connection may always be seen as a sequence of direct
switched connections:

OUTPUT > DMM_HI
OUTPUT > $LABb1 > $ABb1 > $LABb1 > DMM_HI

8.4.2.3 Disconnecting channels

Commands a | b and a || b disconnect the existing connection between channel a
and channel b.

The difference between the two commands is that a | bdisconnects the connection at
precisely one point and allows partial connections to remain in place. Command a ||
b opens all connections along the switching path. Partial connections that remain intact
after channels are disconnected are called obsolete connections.

Signal Routing Library

Signal RoutingR&S®GTSL

120User Manual 1143.6450.42 ─ 22

Command a | b is more efficient, since only one connection needs to be opened. It
may be possible to use the partial connections that remain intact in a subsequent
switching command. That would minimise the number of relays to be switched in this
case as well. This procedure avoids unnecessary switching cycles of relays, thus
extending their service life.

It is only possible to disconnect channels that were previously connected with each
other in the same manner, i.e. the command a | b must be preceded by the com-
mand a > b, otherwise a warning will be reported. It is also permissible to exchange
the order of channels. In other words, the command b | a is also permitted.

After disconnecting connections, to ensure that all connections are actually disconnec-
ted before setting up new connections, it is recommended to use the command ?#
(Wait for Debounce).

8.4.2.4 Other disconnect commands

The command a || b disconnects all existing connections that had previously been
made with channel a. At the same time, all connections along the switching paths are
opened. This isolates channel a from all other channels.

Example:
a > b > c, d > a > e, a||

Channel a was connected with b, d and e. Disconnect command a|| thus corresponds
to commands
a || b, a || d, a || e

The command || disconnects all existing active and obsolete connections. It resets
the relays of all devices administered by the Signal Routing Library. This command
resets all relays on the module responsible for the switched connection, including the
coupling relays. Relays that create the ground reference of stimulus and measurement
devices are not affected. These are not considered part of the switched connection and
therefore cannot be either switched or opened by the Signal Routing Library.

The command % breaks all obsolete connections. For more information, see Chap-
ter 8.4.6.7, "Obsolete connections", on page 130.

After disconnecting connections, to ensure that all connections are actually disconnec-
ted before setting up new connections, it is recommended to use the command ?#
(Wait for Debounce).

The two commands || and % affect all switch modules that are configured in any
bench as SwitchDevice<i>.

Signal Routing Library

Signal RoutingR&S®GTSL

121User Manual 1143.6450.42 ─ 22

8.4.2.5 Switch setting commands

Switch settings are switching commands that are stored in APPLICATION.INI under
a user-defined name and can be called and executed in the test program with their
names. Switch settings are explained in detail in Chapter 8.4.3, "Switch settings",
on page 122.

8.4.2.6 Wait commands

The purpose of wait commands is to delay execution of the switched connection for a
certain amount of time. This may be necessary to ensure that a connection has
actually been made before performing a measurement, or to ensure that one connec-
tion has been opened before another one is closed ("Break-Before-Make").

The Signal Routing Library recognises two types of wait commands:

● Fixed wait time
● Wait until all relays have switched and are debounced

The command ?n delays all subsequent switching commands by n milliseconds. The
command ?# waits until all previously switched relays are debounced. Optionally in the
command ?#n, a maximum time n may be specified in milliseconds. If all relays are not
debounced after this time, the command is aborted with an error. If no maximum time
is specified, the default value of 100 ms is used.

In both cases, n stands for a real numeric that must be greater than 0 with a maximum
value of 10000 (10 seconds).

Example:
POWER | P1, ?#, POWER > P2, ?#

This switching command disconnects POWER from P1 and waits until the connection
is debounced, i.e. confirmed opened, before making the connection to P2. Then the
function waits until the new connection has been set up before the ROUTE_Execute
function returns and e.g. a voltage measurement can be performed.

8.4.2.7 Compound commands

Individual switching commands can be combined to form longer switching commands.
The commands are separated from each other by commas:

Example:
GEN_LO > GND, GEN_HI > INPUT, DMM_LO > GND, ?#

8.4.2.8 Comment

A comment in a switching command is introduced by a semicolon. All following charac-
ters are ignored by the command interpreter. Comments are especially helpful in
switching commands that are saved as switch settings in APPLICATION.INI.

Signal Routing Library

Signal RoutingR&S®GTSL

122User Manual 1143.6450.42 ─ 22

8.4.3 Switch settings

Switch settings are switching commands that are stored in APPLICATION.INI under
a user-defined name and can be called and executed in the test program with their
names.

The advantage of switch settings is being able to save very complex switched connec-
tions under a meaningful name. These switched connections can be set up and dis-
connected again in the test program by passing their name to the switching command.

Switch settings are checked for correct syntax when the Signal Routing Library is loa-
ded and prepared for runtime optimisation. This makes it possible for them to run faster
in ROUTE_Execute than the corresponding directly transferred switching command.

8.4.3.1 Entries in APPLICATION.INI

Like channel tables, switch settings are saved in APPLICATION.INI in the [switch-
>Name] section. There are no constraints on the Name entry, but it must be unique
within the APPLICATION.INI. The name of this section is referenced in the bench
with the keyword SwitchSettings:

[bench->test]
DigitalMultimeter = device->PSAM
FunctionGenerator = device->PFG
SwitchDevice1 = device->PSAM
SwitchDevice2 = device->PMB_10
SwitchDevice3 = device->PFG
AnalogBus = device->ABUS
AppChannelTable = io_channel->test

SwitchSettings = switch->test

On the left side, the switch setting table contains the names of the switch settings,
which must begin with a # sign. The switching command is on the right side.

The switch setting name on the left side must be unique. It must be no more than 80
characters long and may only contain the following characters:

Table 8-7: Character set for switch setting names

"#" Switch setting prefix

"A" ... "Z" Upper case characters

"a" ... "z" Lower case characters

"0" ... "9" Numbers

"_" Underscore

"." Decimal point

The character # introduces the name and is only permitted as the first character.

Signal Routing Library

Signal RoutingR&S®GTSL

123User Manual 1143.6450.42 ─ 22

The switching command is on the right side. It may contain simple and compound
switching commands as well as a comment. However, it may not contain additional
switch setting commands.

The maximum length of the switching command is 260 characters. Switching com-
mands that contain more than 260 characters must be broken up into several lines.
This can be done by entering a switch setting with the same name in the following line
and continuing the switching command there.

Example:
[switch->test]

#ConnectGenerator = GEN_LO > GND, GEN_HI > INPUT ; Generator HI and LO to UUT

#ConnectDMM = DMM_LO > GND, DMM_HI > OUTPUT ; DMM HI and LO to UUT

#ConnectAll = GEN_LO > GND, GEN_HI > INPUT,
#ConnectAll = DMM_LO > GND, DMM_HI > OUTPUT,
#ConnectAll = ?# ; Connect generator and DMM to UUT and wait for debounce

8.4.3.2 Making switch settings

Switch settings are performed by specifying the name in the switching command:

#ConnectAll

Switch settings can be combined with switching commands and additional switch set-
tings:

#ConnectGenerator, #ConnectDMM, DMM_LO | GND, ?#

Appending one of switching commands | or || breaks the switched connection of
switch settings. With these commands, all > commands for connecting channels are
replaced by | or ||:

#ConnectAll |

If the switch setting already contains commands for disconnecting the connections,
they remain unchanged, but the ROUTE_Execute function returns a warning.

8.4.4 Channel attributes

Channel attributes define certain properties of a channel. They are optional and can be
entered in the channel tables. Channel attributes separated by commas are appended
to the physical channel names, for example:

.ABa1 = ABUS!ABa1,nonrouting

Signal Routing Library

Signal RoutingR&S®GTSL

124User Manual 1143.6450.42 ─ 22

8.4.4.1 Channel attribute "nonrouting"

The channel attribute nonrouting can be used for global and local analog measurement
bus lines. If it is specified, it makes it impossible for the analog measurement bus line
of the Signal Routing Library to be used for automatic path search.

This attribute can be used, for example, if an analog measurement bus line has a fixed
connection with a signal fed in externally, which therefore must not be connected auto-
matically with other signals.

8.4.5 Display switched connection

During the development and test phase of a test program, it is helpful to be able to dis-
play the current state of switched connections. This display can be activated by speci-
fying the option

SignalRoutingDisplay = 1

in APPLICATION.INI. If the display is activated, a window appears when
ROUTE_Setup is called. The window continues to be displayed until ROUTE_Cleanup
is called. The window can be minimised during this time, but cannot be closed.

Figure 8-5: Signal Routing Display

Clicking on the "Refresh" button or pressing the "F5" key updates and shows current
switched connections.

The scope of information that appears can be changed by selecting the options in the
upper display area:

Signal Routing Library

Signal RoutingR&S®GTSL

125User Manual 1143.6450.42 ─ 22

phys. names displays in addition the physical channel names

local bus displays in addition the connection via local analog
measurement buses

bench info displays in addition the name of the bench

obsolete connections displays in addition existing obsolete connections

The switched connection is displayed sorted according to analog measurement bus
lines. For each analog measurement bus, a list of channels connected to it is shown.
The example above shows the switched connection of Figure 8-4.

Figure 8-6: Display with local analog measurement buses and physical channel names

The indentation of channel names indicates over how many sub-paths the channels
are connected with each other.

8.4.6 Switched connection algorithms

This chapter treats switched connection algorithms, i.e. the rules that define how
switched connections in the Signal Routing Library are set up and broken.

8.4.6.1 Connecting channels

There are three possible results when two channels are to be connected:

● A direct connection between the channels is possible
● No connection is possible
● A connection via local/global analog measurement bus line is possible

Signal Routing Library

Signal RoutingR&S®GTSL

126User Manual 1143.6450.42 ─ 22

To make a direct connection only a single switching process is required. In technical
terms, a direct connection can be made by calling the xyz_Connect function of the
device driver. If a direct connection between two channels is possible, the Signal Rout-
ing Library will create it.

In direct connections, the two channels are always on the same module. For modules
with analog measurement bus access, one of the two channels may also be on the
analog measurement bus.

On third-party modules, i.e. modules of type IVI_SWITCH, the Signal Routing Library
can only apply direct connections.

If a direct connection is not possible, the Signal Routing Library can search for a con-
nection through local and global analog measurement buses.

If no such connection is found either, the switched connection cannot be made and the
ROUTE_Execute function returns with an error.

If two channels need to be connected to each other and there is already a connection
between them, the ROUTE_Execute returns with a warning. The current connection is
not changed.

8.4.6.2 Routing via analog measurement buses

The Signal Routing Library can make connections automatically via free local and
global analog measurement bus lines. This makes it easy to connect two channels on
different modules together. The coupling relays are switched automatically.

The Signal Routing Library first searches for analog measurement buses with which a
connection is potentially possible. Not any channel may be connected with any analog
measurement bus. The following table gives an overview of the number of analog mea-
surement bus access points per channel:

Table 8-8: Analog measurement bus access of various module types

Module type Channels Analog measurement
bus access points per channel

R&S TS-PAM CHA1_HI, …, CHA4_HI,
CHB1_HI, …, CHB4_HI

4

R&S TS-PFG CH1_HI, CH1_LO, CH2_HI,
CH2_LO

8

R&S TS-PIO2 CH1_IN, … CH16_IN 2

R&S TS-PMB P1, …, P90

IL1, …, IL3

4

8

R&S TS-PSAM DMM_HI, DMM_LO, DMM_SHI,
DMM_SLO

8

R&S TS-PSM1 CH1com, …, CH16com, CH1no,
…, CH16no

LPBA, …, LPBD, IL1com,
IL2com, IL1no, IL2no

1 or 2

Signal Routing Library

Signal RoutingR&S®GTSL

127User Manual 1143.6450.42 ─ 22

Module type Channels Analog measurement
bus access points per channel

R&S TS-PSM2 CH1_HI, …, CH8_HI, CH1_LO,
…, CH8_LO

2

R&S TS-PSM3 CH1_NO, …, CH8_NO

CH9_NO, ..., CH16_NO,
CH9_COM, ..., CH16_COM

CH1_COM, ..., CH8_COM,
CH9_IV, ..., CH16_IV

3

2

1

R&S TS-PSM4 CH1_NO, …, CH20_NO

CH9_COM, ..., CH20_COM

CH1_COM, ..., CH8_COM

3

2

1

R&S TS-PSM5 CH1_NO, …, CH4_NO

CH5_NO, ... , CH8_NO,
CH5_COM, ..., CH8_COM

CH1_COM, ..., CH4_COM,
CH5_IV, ... , CH8_IV

3

2

1

R&S TS-PSU

R&S TS-PSU12

CH1_HI, CH1_LO, CH1_SHI,
CH1_SLO

CH2_HI, CH2_LO, CH2_SHI,
CH2_SLO

4

4

It is possible there is already a connection with the desired signal to an analog mea-
surement bus. In this case an attempt is made to make a connection to this analog
measurement bus. Otherwise a free analog measurement bus is selected from poten-
tially available buses and the connection is made through that bus.

Modules with few analog measurement bus access points should always be connected
before modules with many analog measurement bus access points. This will ensure
the routing algorithm is still able to find enough potential analog measurement buses
for the switched connection.

The analog measurement bus line is selected to minimise "cost" as much as possible.
The system-wide analog measurement bus is the most expensive resource, followed
by the local analog measurement buses. There are special switching options for R&S
TS-PMB modules that are explained in greater detail in Chapter 8.4.6.9, "Routing on
R&S TS-PMB matrix modules", on page 132.

8.4.6.3 Manual and automatic routing

Complex (i.e. non-direct) switched connections can be routed manually or automati-
cally. Manual routing means the switching command contains exclusively direct con-
nections:

GEN_HI > $LABa1 > $ABa1 > $LABa1 > INPUT

The connection GEN_HI > $LABa1 is a direction connection, as is
$LABa1 > $ABa1, etc.

Signal Routing Library

Signal RoutingR&S®GTSL

128User Manual 1143.6450.42 ─ 22

It is also possible to perform the switching command with automatic routing. In this
case the Signal Routing Library selects a suitable analog measurement bus line for the
connection:

GEN_HI > INPUT

Which analog measurement bus line is suitable depends on the actual switching state
of the system. Therefore it cannot be assumed that GEN_HI > INPUT will always
select the same analog measurement bus line for automatic routing. If another signal is
already assigned to $ABa1, for example, a different free analog measurement bus line
must be found. Automatic routing is only possible via local and global analog measure-
ment bus lines. Switched connections over local multiplexer or power buses can only
be routed manually.

8.4.6.4 Manually and automatically routed channels

A channel that is explicitly listed in a switching command is said to be manually routed.
By contrast, channels, which were automatically selected by the routing algorithm
rather than being explicitly listed, are said to be automatically routed.

Connections to automatically routed channels are not permitted. Example:

GEN_HI > INPUT
POWER > $ABa1 > VCC

The first switching command establishes a connection between GEN_HI and INPUT.
The second switching command connects the POWER signal via the analog measure-
ment bus $ABa1 with the VCC channel of the UUT. Assuming the first switched con-
nection automatically selects analog measurement bus $ABa1, the second command
would result in a short circuit between GEN_HI and POWER. This connection is there-
fore not permissible and the ROUTE_Execute function reports an error.

On the other hand, if the first switching command is routed via $ABb1 and $ABa1 is
still free, for example, the second switching command can be performed.

8.4.6.5 Multiple assignment of switching paths

In the following example, the generator signal from GEN_HI will be directed to the input
of the UUT and also to a monitor output to connect an oscilloscope, for example. The
corresponding switching commands are:

GEN_HI > INPUT
GEN_HI > MONITOR

The Signal Routing Library first sets up the connection GEN_HI > INPUT via a free
analog measurement bus line, for example $ABa1.

The already existing switched sub-connection from GEN_HI to LABa1 of the R&S TS
PMB module can be used for the second connection GEN_HI > MONITOR. Then the
Signal Routing Library only needs to make the connection between LABa1 and MONI-
TOR.

Signal Routing Library

Signal RoutingR&S®GTSL

129User Manual 1143.6450.42 ─ 22

Figure 8-7: Multiple assignment of a switching path

The section between GEN_HI and LABa1 is now used by two switched connection
paths. The Signal Routing Library administers a reference counter for each partial sec-
tion of a switched connection. The counter shows how many switched connections use
the partial section. The reference counters for the partial sections used in common
(represented in the figure by red and blue dashed lines) are set by the switched con-
nection GEN_HI > MONITOR to 2.

The reference counters are important when breaking the connection:

GEN_HI || INPUT

If GEN_HI is disconnected from INPUT, it must still be ensured that the connection
GEN_HI to MONITOR remains intact. Therefore the sections that are used in common
must not be disconnected.

Figure 8-8: Multiple assignment after breaking the connection to INPUT

Disconnection causes all reference counters along the switched connection to be
decremented, but only those whose reference counters are now 0 may be opened. The
relays along the entire path of the switched connection are not opened until the other
connection has also been disconnected:

GEN_HI || MONITOR

If a switching command is performed for an already existing connection, a warning is
reported and the reference counter is not incremented:

GEN_HI > INPUT
GEN_HI > INPUT

The following command disconnects the connection because the reference counter
has not been changed for the second switching command:

Signal Routing Library

Signal RoutingR&S®GTSL

130User Manual 1143.6450.42 ─ 22

GEN_HI || INPUT

8.4.6.6 Disconnecting connections

Only connections that were previously set up with the same two channels can be dis-
connected with the commands | and ||. Otherwise a warning is reported.

When connections are disconnected, multiple assignment of switching paths is taken
into consideration. The connection can only be disconnected at this point (i.e. this relay
can only be opened) if the reference counter of a section (i.e. of a relay) becomes zero.

The command a || b opens all relays along the path between a and b, provided their
reference counters are not greater than 1.

The command a | bopens the connection at one point only. This command can be
performed more quickly than a || b because only one switching process is neces-
sary. Connections that are currently no longer required remain intact. These connec-
tions are referred to as obsolete connections, in contrast to active connections.

8.4.6.7 Obsolete connections

An obsolete connection remains intact if an automatically routed connection is opened
with the switching command a | b.

Example:
GEN_HI > INPUT
GEN_HI | INPUT

Assuming the first switching command sets up a connection via $ABa1, there are sev-
eral ways for the second switching command to disconnect the connection:

Figure 8-9: Ways to disconnect the GEN_HI > INPUT switched connection

The Signal Routing Library always attempts to disconnect the connection as close as
possible to the UUT. In the example this means that the connection $LABa1 to INPUT
will be opened on the matrix module. The remainder of the switched connection
GEN_HI to $LABa1 of the R&S TS-PMB matrix module remains as an obsolete con-
nection. The reference counter of an obsolete connection is 0, but the connection is
still present physically.

Signal Routing Library

Signal RoutingR&S®GTSL

131User Manual 1143.6450.42 ─ 22

Figure 8-10: Obsolete connection GEN_HI > $LBABa1

In many cases, obsolete connections can be reused in subsequent switching com-
mands.

Example:
GEN_HI > MONITOR

Since the GEN_HI signal is already switched to $LABa1 of the R&S TS?PMB matrix
module, it is sufficient to create the connection between $LABa1 and MONITOR by
closing a single relay. In this manner obsolete connections can contribute to improved
performance. This method extends the relay's life cycle, since switching processes are
avoided.

Figure 8-11: Reusing an obsolete connection

On the other hand, obsolete connections can block the analog measurement bus with
signals that are no longer used. If the Signal Routing Library cannot find any more free
analog measurement buses for automatic routing, it can release all obsolete connec-
tions by itself. That means that all obsolete connections are physically disconnected,
i.e. the corresponding relays are opened. Only the active connections remain intact.
The switching command % is used to selectively break all obsolete connections.

8.4.6.8 Analog measurement buses and coupling relays

All modules with analog measurement bus access have a local analog bus that can be
connected with the global analog measurement bus. If a channel of a module needs to
be connected with a global analog measurement bus, the coupling relays are automati-
cally switched:

GEN_HI > $ABa1

Signal Routing Library

Signal RoutingR&S®GTSL

132User Manual 1143.6450.42 ─ 22

This switching command first connects GEN_HI with the local analog measurement
bus line LABa1 and then closes the coupling relay to connect LABa1 with ABa1.

GEN_HI || $ABa1

This switching command opens all connections between GEN_HI and ABa1, i.e. the
relay that connects GEN_HI with the local analog bus line LABa1 is opened as well as
the coupling relay between LABa1 and ABa1.

If only the coupling relay for analog measurement bus line ABa1 on the R&S TS-PFG
module needs to be closed, the switching command should be as follows:

$LABa1 > $ABa1

This command is not possible because the assignment of the system name $LABa1 to
the R&S TS-PFG module is not evident from the context. In this case the local analog
measurement bus line must be explicitly added to the channel table:

[io_channel->test]
PFG.LABa1 = PFG!LABa1

The following switching commands closes the coupling relay for the analog measure-
ment bus line ABa1 on module R&S TS-PFG:

PFG.LABa1 > $ABa1

The Signal Routing Library accepts the physical channel names "LABa1" to "LABd2"
uniformly for all modules with analog measurement bus access. The same is true if the
device driver of the module does not accept that channel name. This serves to stand-
ardise the differing treatment of coupling relays by device drivers in the Signal Routing
Library.

8.4.6.9 Routing on R&S TS-PMB matrix modules

R&S TS-PMB matrix modules have two special features that must be taken into con-
siderations for switched connections:

1. The even/odd rule applies to direct connections

2. Local analog buses can be connected in pairs via sense relays

The even/odd rule states that a matrix channel (P1 to P90) with an even number can
only be connected to a local analog measurement bus that also has an even number.
The same applies to channels and buses with odd numbers.

This rule does not apply to Instrument Lines IL1 to IL3. They can be connected with
each local analog measurement bus.

Signal Routing Library

Signal RoutingR&S®GTSL

133User Manual 1143.6450.42 ─ 22

Figure 8-12: Block diagram R&S TS-PMB matrix

To make it possible nevertheless to connect an odd channel (for example P1) with an
even local analog measurement bus (for example LABa2), there is an option to con-
nect an analog measurement bus pair with each other via a relay. The four so-called
sense relays connect LABa1 - LABa2, LABb1 - LABb2, LABc1 - LABc2 and LABd1 -
LABd2 respectively.

The following example illustrates the switching possibilities. The application channel
table contains the following entries:

[io_channel->test]
P1 = PMB_10!P1
P2 = PMB_10!P2
P3 = PMB_10!P3
P4 = PMB_10!P4
; etc.
P89 = PMB_10!P89
P90 = PMB_10!P90

Channel P2 will be connected with global analog measurement bus ABa1:

P2 > $ABa1

To do this, P2 is first switched to LABa2. Then it is connected with LABa1 via the
sense relay and is directed through the coupling relay to ABa1.

Signal Routing Library

Signal RoutingR&S®GTSL

134User Manual 1143.6450.42 ─ 22

Figure 8-13: Switched connection P2 > $ABa1

The Signal Routing Library is capable of creating switched connections automatically
via sense relays and coupling relays. A requirement for the example shown here is that
other signals must not already be assigned to the two local analog measurement bus
lines LABa1 and LABa2.

Local switched connections of channels to an R&S TS-PMB matrix module can be
made in the same way:

P1 > P3, P4 > P89

Signal Routing Library

Signal RoutingR&S®GTSL

135User Manual 1143.6450.42 ─ 22

Figure 8-14: Switched connection P1 > P3, P4 > P89

The first connection leads from P1 through LABa1 to P3. Since both channels are odd,
only a local analog measurement bus is required. An odd and an even channel are
involved in the second connection. In this case the connection leads from P4 to LABb2,
then via the sense relay to LABb1 and from there to P89.

8.4.6.10 Routing on power switching modules

A special rule related to local switching of channels applies to the power switching
modules R&S TS-PSM1, R&S TS-PSM2, R&S TS-PSM3, R&S TS-PSM4 and R&S
TS-PSM5. If both channels are on the same module, only direct connections are per-
mitted. Connections over the local analog measurement bus are not automatically
routed.

The reason is that the local analog measurement bus is only suitable for currents up to
maximum 1 A, but some channels of the power switching modules can switch up to
16 A. To prevent these high currents from being accidentally directed over the local
analog measurement bus, automatic routing over the local analog measurement bus is
not allowed for these modules.

However, this rule does not apply to connections between the switching module and
the global analog measurement bus or other modules. Switched connections such as
CH1_COM > $ABa1 or CH1_COM > DMM_HI are possible and are automatically
directed via the coupling relays and the local and global analog measurement bus.

Signal Routing Library

Signal RoutingR&S®GTSL

136User Manual 1143.6450.42 ─ 22

8.4.7 Using the Signal Routing Library with other libraries

The Signal Routing Library retains an image of the complete switched connections of
the system in active memory. This makes it possible to calculate a new switched con-
nection quickly, since no data transfer is required between the modules and the com-
puter. This process does require, however, that no switched connections be performed
outside the Signal Routing Library.

Faulty Switched Connections and Short Circuits
Calling functions that change the switching state of modules outside of the Signal
Routing Library may result in faulty switched connections and short circuits.
Because of this, the following calls are not permitted when using the Signal Routing
Library:
● Calls to Switch Manager functions
● Direct calls to device drivers that change the switched connection
● Calls to functions in libraries that switch the coupling relays
● Use of the automatic coupling relay mode with R&S TS-PMB modules.

Special instructions must be followed in the following cases:

● Performing In-Circuit Tests (R&S EGTSL)
● Using the VACUUM Library
● Calling functions in device drivers or libraries that reset modules.

8.4.7.1 Switch Manager

The Switch Manager Library SWMGR is the predecessor of the Signal Routing Library.
The Switch Manager offers less functionality and is significantly more difficult to use. It
can be used instead of the Signal Routing Library if compatibility with earlier R&S
GTSLversions is required. The Signal Routing Library and Switch Manager are not
designed for simultaneous use in a test program.

8.4.7.2 Device drivers

Functions in device drivers that affect the switched connections of modules must not
be called if these modules are also administered by the Signal Routing Library, i.e. if
they are configured as "SwitchDevice<i>". Examples of these functions are:

● prefix_Connect
● prefix_Disconnect
● prefix_DisconnectAll
● prefix_SetPath

Signal Routing Library

Signal RoutingR&S®GTSL

137User Manual 1143.6450.42 ─ 22

The placeholder prefix stands for the function prefix of the device driver, for example
rspsam or rspmb. Some device drivers offer additional switching functions, for example
rspsam_cnx_Matrix, which also must not be used. Functions that affect the ground
reference of a device, such as rspsam_cnx_Gnd or rspfg_ConfigureGround, are
exceptions to this rule.

8.4.7.3 Coupling relays

Functions in R&S GTSL libraries that affect switched connections must not be called.
These functions are:

● DMM_Conf_Coupling_Relays (DMM.DLL)
● FUNCGEN_ConfigureCouplingRelays (FUNCGEN.DLL)
● SIGANL_ConfigureCouplingRelays (SIGANL.DLL)

Device driver functions that affect switched connections of coupling relays must not be
used.

Note that with R&S TS-PMB modules the automatic mode of the coupling relays must
not be used together with the Signal Routing Library. Therefore the
RSPSAM_ATTR_CR_AUTO attribute must not be set to VI_TRUE. Use of
DriverSetup=CRAuto:1 in the DriverOption entry of PHYSICAL.INI is also not per-
mitted. The Signal Routing Library ensures that the setting of the coupling relay mode
is correct in the ROUTE_Setup function.

8.4.7.4 In-Circuit Test

The In-Circuit Test Library ICT.DLL may be used together with the Signal Routing
Library if the following rules are observed:

Function ICT_Load_Program prepares the modules entered as ICTDevice<i> and
the R&S TS PMB matrix modules entered as SwitchDevice<i> for use in the In-Circuit
Test. At the same time the modules are reset. This function may only be called if the
Signal Routing Library has not switched any connections.

The functions ICT_Run_Program and ICT_Debug_Program also reset the modules
and change the coupling relays. When the In-Circuit Test is being performed, make
certain that no signals are switched to the global analog measurement bus lines.

Damaged test system
Signals on global analog measurement bus lines when an In-Circuit Test is called may
result in incorrect measurements, faulty switched connections or short circuits.
Before the ICT functions named above are called, all active and obsolete connections
of the Signal Routing Library must be opened with the switching command || (Discon-
nect All). This may in turn damage the test system.

Signal Routing Library

Signal RoutingR&S®GTSL

138User Manual 1143.6450.42 ─ 22

If the ICT program is terminated and these functions return, the configured modules
(ICTDevice<i> and R&S TS-PMB matrix modules entered as SwitchDevice<i>) are in
reset state.

The function ICT_Unload_Program also resets configured modules to the basic
state. They may only be called if the Signal Routing Library has not switched any con-
nections.

When using ICT Extension Libraries the same instructions apply for the mod-
ules that are used by those libraries.

8.4.7.5 VACUUM Library

The Vacuum Library VACUUM.DLL can be used together with the Signal Routing
Library if the R&S TS-PSYS1 or R&S TS-PSYS2 modules configured as VacuumCon-
trol<i> are not also configured as SwitchDevice<i>. If these rules are not observed the
switching command || causes the vacuum to be deactivated.

8.4.7.6 Reset modules

Functions that trigger a reset of modules must only be called if it is assured that the
Signal Routing Library on these modules has no more active or obsolete connections.
It is recommended to perform the switching command || (Disconnect All) previously.

8.4.8 Panel test

A panel test is a test of a number of identical test units, called UUTs or units under test,
which are arranged on a panel, i.e. a carrier shared by the units. The UUTs are tested
either one after the other or simultaneously.

Therefore the test programs for the individual UUTs on the panel differ only in adapter
wiring, not in sequence. This makes it efficient to create a single test program that is
used for all UUTs and to control the variable switched connection with configuration
files. This procedure minimises the effort required to maintain the test program,
because each change affects all UUTs simultaneously.

A separate bench in APPLICATION.INI and a separate application-specific channel
table has to be created for each UUT on the panel. The logical channel names are the
same, but the assignment to physical channel names differs according to adapter wir-
ing.

In the following example, differences between the two benches are highlighted in col-
our:

Signal Routing Library

Signal RoutingR&S®GTSL

139User Manual 1143.6450.42 ─ 22

[bench->test1]

DigitalMultimeter = device->PSAM
FunctionGenerator = device->PFG
SwitchDevice1 = device->PSAM
SwitchDevice2 = device->PMB_10
SwitchDevice3 = device->PFG

AnalogBus = device->ABUS

AppChannelTable = io_channel->test1

[io_channel->test1]
INPUT = PMB_10!P1
GND = PMB_10!P2
OUTPUT = PMB_10!P3
MONITOR = PMB_10!P65

[bench->test2]

DigitalMultimeter = device->PSAM
FunctionGenerator = device->PFG
SwitchDevice1 = device->PSAM
SwitchDevice2 = device->PMB_10
SwitchDevice3 = device->PFG
SwitchDevice4 = device->PMB_14
AnalogBus = device->ABUS

AppChannelTable = io_channel->test2

[io_channel->test2]
INPUT = PMB_14!P33
GND = PMB_14!P34
OUTPUT = PMB_14!P35
MONITOR = PMB_10!P65

Devices used in common such as PSAM and PFG and PMB_10 occur in both
benches. Bench "test2" also uses matrix module PMB_14.

The logical channel names in the two channel tables are identical. Physical channel
names differ depending on different adapter wiring. The MONITOR channel is the
same for both channel tables. In this case, an oscilloscope will be connected to make it
possible to monitor the test signals of both UUTs.

The even/odd relationship of channels should be retained in all channel tables for the
panel test. This means either only even or only odd physical channels should be
assigned to a logical channel on an R&S TS-PMB matrix module.

The program sequence for the panel test is such that the ROUTE_Setup function is is
called once at the beginning for each UUT passing the appropriate bench name. This
results in a separate resource ID for the Signal Routing Library for each UUT.

The corresponding resource ID for the each UUT is passed in all subsequent switching
functions.

Example:

#define NUM_UUTS 2

short errorOccurred;
long errorCode
char errorMessage[GTSL_ERROR_BUFFER_SIZE];
long resourceId[NUM_UUTS];

// setup libraries
RESMGR_Setup (0, "physical.ini", "testApplication.ini",
 &errorOccurred, &errorCode, errorMessage);

// setup library for each UUT in the panel
for (i = 0; i < NUM_UUTS; i++)
{
 char benchName[80];
 sprintf (benchName, "bench->test%d", i+1);
 ROUTE_Setup (0, benchName, &resourceId[i],
 &errorOccurred, &errorCode, errorMessage);

Signal Routing Library

Signal RoutingR&S®GTSL

140User Manual 1143.6450.42 ─ 22

}

// call tests for each UUT
for (i = 0; i < NUM_UUTS; i++)
{
 // connect generator
 ROUTE_Execute (0, resourceId[i], "GEN_LO > GND, GEN_HI > INPUT",
 &errorOccurred, &errorCode, errorMessage);

 // connect DMM
 ROUTE_Execute (0, resourceId[i], "GND > DMM_LO, OUTPUT > DMM_HI",
 &errorOccurred, &errorCode, errorMessage);

 // disconnect all
 ROUTE_Execute (0, resourceId[i], "||",
 &errorOccurred, &errorCode, errorMessage);
}

// close library for each UUT
for (i = 0; i < NUM_UUTS; i++)
{
 ROUTE_Cleanup (0, resourceId[i], &errorOccurred, &errorCode,
 errorMessage);
}

RESMGR_Cleanup (0, &errorOccurred, &errorCode, errorMessage);

In the example above, the number of UUTs is defined as a constant NUM_UUTS. The
resource IDs for the individual UUTs are kept in an array resourceId[NUM_UUTS] The
relevant UUT is selected by means of the index variable i. In this manner the program
can easily be adapted to another number of UUTs on the panel by defining
NUM_UUTS appropriately. In addition, the appropriate number of benches and chan-
nel tables must also be added to APPLICATION.INI.

Switch settings can also be used in the panel test. Since they contain only logical
channel names it is sufficient to create a table used in common with switch settings
and to add a reference to the table to each bench.

All switching commands affect only the SwitchDevice<i> configured in the relevant
bench by the resource ID, with the following exception:

The two commands || and % affect all hardware elements, i.e. all switch modules that
are configured in any bench as SwitchDevice<i>.

8.4.9 Error cases

If an error occurs in a switching command, the command is aborted and the error is
reported. In addition, the switching state that was present before the ROUTE_Execute
function was called is restored.

Signal Routing Library

Signal RoutingR&S®GTSL

141User Manual 1143.6450.42 ─ 22

Some switching commands cannot be undone once they are complete. These are ||
(Disconnect All) and % (Disconnect all obsolete connections). Because of this it is not
guaranteed that all connections will still be in existence after an error.

If a warning occurs during a switching command, the execution of the command con-
tinues and the warning is reported. If more than one warning occurs in a command,
only the first warning is reported.

8.4.10 Integrating third-party modules

In addition to R&S CompactTSVP modules, the Signal Routing Library can also control
third-party switch modules. A requirement in this case is that the modules provide a
IVI-C driver of class IviSwtch. A section with the following information must be entered
in PHYSICAL.INI for each external module:

Table 8-9: Entries in PHYSICAL.INI for third-party modules

Keyword Value Description

Type String Mandatory entry

IVI_SWITCH

ResourceDesc String Mandatory entry

Resource descriptor string

DriverDll String Mandatory entry

File name of the device driver
DLL

DriverPrefix String Mandatory entry

Prefix for the IVI driver functions

DriverSetup String Optional entry

Optional indications which are
passed to the device driver during
the prefix_InitWithOptions func-
tion.

Refer to the documentation for the module about the entries required for Resource-
Desc, DriverDll, DriverPrefix and DriverSetup.

Sample entry for an NI2565 switch module:

[device->NI2565]
Type = IVI_SWITCH
ResourceDesc = PXI1::15::INSTR
DriverDLL = niswitch_32.dll
DriverPrefix = niSwitch

Signal Routing Library

Signal RoutingR&S®GTSL

142User Manual 1143.6450.42 ─ 22

8.4.11 Examples

8.4.11.1 Scanner

In the following example, three voltages will be measured between two channels HI
and LO. To do this, channels DMM_HI and DMM_LO are connected with the corre-
sponding UUT channels and the voltage is measured. Then the connections are dis-
connected.

Signal Routing Library

Signal RoutingR&S®GTSL

143User Manual 1143.6450.42 ─ 22

Example:
[io_channel->scanner]
DMM_HI = psam!dmm_hi
DMM_LO = psam!dmm_lo
HI1 = pmb_10!P1
HI2 = pmb_10!P2
HI3 = pmb_10!P3
LO1 = pmb_10!P4
LO2 = pmb_10!P5
LO3 = pmb_10!P6

The corresponding switching commands are:
DMM_HI > HI1, DMM_LO > LO1, ?#

(Perform measurement)
DMM_HI | HI1, DMM_LO | LO1, ?#

Then the same process is performed for channel pairs HI2 / LO2 and HI3 / LO3.
DMM_HI > HI2, DMM_LO > LO2, ?#
DMM_HI | HI2, DMM_LO | LO2, ?#
DMM_HI > HI3, DMM_LO > LO3, ?#
DMM_HI | HI3, DMM_LO | LO3, ?#

For the first measurement, DMM_HI through $ABa1 is connected with HI1 (odd chan-
nel) and DMM_LO through $ABb2 is connected with LO1 (even channel):

Figure 8-15: Scanner, measurement on HI1 and LO1

HI2 (even channel) and LO2 (odd channel) are used for the second measurement.
Now a direct connection from $ABa1 to HI2 is no longer possible. The connection to
HI2 is now made via the sense relay or the R&S TS-PMB module and the local analog
measurement buses $LABa1 and $LABa2. The connection to LO2 is also made by a
sense relay.

Figure 8-16: Scanner, measurement to HI2 and LO2 via sense relays

Signal Routing Library

Signal RoutingR&S®GTSL

144User Manual 1143.6450.42 ─ 22

In the following measurement on HI3 and LO3 both channels can again be connected
directly, i.e. without sense relays, with the analog measurement buses. The connec-
tions which are still set up through the sense relays remain in existence as obsolete
connections.

Figure 8-17: Scanner, measurement on HI3 and LO3 with obsolete connections.

Active and obsolete connections can be seen in the switched connection display:

Figure 8-18: Switched connection display for measurement on HI3 and LO3

8.4.11.2 Current measurement via shunt

Power switching module R&S TS-PSM1 offers the possibility of measuring high cur-
rents with a voltage measurement on the integrated shunt resistors.

Signal Routing Library

Signal RoutingR&S®GTSL

145User Manual 1143.6450.42 ─ 22

When setting up the connections for this measurement, note that the channel name is
the same on both sides of the shunt resistor, for example CH1no for channel 1. To
ensure that DMM_HI and DMM_LO are directed to the two different connections of the
shunt resistor, however, the analog measurement bus lines must be explicitly speci-
fied:

Figure 8-19: Current measurement via R&S TS-PSM1 shunt resistor

The lower connection of the shunt resistor in Figure 8-19 can only be reached through
analog measurement bus ABb1. The upper connection can only be reached through
ABa1. The switching command is therefore as follows:

DMM_HI > $ABa1 > CH1no
DMM_LO > $ABb1 > CH1no

Signal Routing Library

Creation of Test LibrariesR&S®GTSL

146User Manual 1143.6450.42 ─ 22

9 Creation of Test Libraries
Knowledge of C programming is needed to create self test libraries.
Do not modify the original Sample Self Test Library project. Instead, make a copy of
the sftcsample directory and make your modifications in the copy.

Be careful when you put your private DLLs in the gtsl\bin directory. Always keep a
copy, because they may be overwritten by an update to R&S GTSL if there is a DLL
with the same name. It is safer to keep your projects and DLLs in a completely sepa-
rate location beside the R&S GTSL. Be sure to add the directory where your DLLs
reside to the PATH environment variable of your computer.

9.1 Scope

9.1.1 Identification

This chapter describes how to write a high-level library for the R&S GTSL software.

9.1.2 System overview

A high-level library offers a group of functions which cover the needs for testing a spe-
cific class of UUTs. As an example, the GSM library includes all functions required for
final and functional tests of GSM mobile phones.

The library functions are called from a TestStand sequence. The functions themselves
interact with the resource manager library and the device driver(s).

Figure 9-1: R&S GTSL software overview

Scope

Creation of Test LibrariesR&S®GTSL

147User Manual 1143.6450.42 ─ 22

9.2 Referenced documents

[INSTR] LabWindows/CVI Instrument Driver Developers
Guide, National Instruments, February 1998 Edition

[RESMGR] Resource Manager online help file (resmgr.hlp)

9.3 Software design decisions

The design of any R&S GTSL high-level library must meet the following requirements:

● The library must be delivered as a Dynamic Link Library (.DLL), including type
library information, a function panel and a Windows help file.

● The function call interface must follow the template.
● Each library must offer a Setup and a Cleanup function as well as a Lib_Version

function.
● The library must use the resource manager functions (if applicable).
● The library must be thread safe.
● The library must support device sharing using the lock/unlock functions of the

resource manager.

These requirements are described in detail in the following sections.

9.4 Architectural design

9.4.1 Components

The basic components of each high-level library are:

● High-level Library "xyz": (deliverable items)
– xyz.h - include file

– xyz.lib - import library

– xyz.dll - dynamic link library

– xyz.fp - CVI function panel

– xyz.hlp - Windows help file
● High-level Library "xyz" (non-deliverable items)

– xyz.c - source file

– xyz.prj - CVI project file

– ... - additional source/include files (if applicable)

Architectural design

Creation of Test LibrariesR&S®GTSL

148User Manual 1143.6450.42 ─ 22

9.4.2 Concept of execution

The high-level library functions are called from the TestStand sequencer using the DLL
flexible prototype adapter. The function prototypes follow the TestStand default tem-
plate for the DLL flexible prototype adapter and allow easy integration into the Test-
Stand environment.

Each high-level library offers a setup function, which identifies the device(s) and
options to be used, initializes the appropriate device drivers and puts the device(s) into
a proper operating state. The setup function must be called from the TestStand
sequence before any other library function. The cleanup function must be called at the
end of all tests, it releases the devices and frees the resources. The Lib_Version func-
tion returns the version string of the library.

The setup function returns a resource id, i.e. a unique identifier, which must be used
for all subsequent function calls of the high-level library.

A set of functions is provided depending on the purpose of the library. The GSM
library, for example, offers configuration and measurement functions for signaling and
non-signaling mode as well as audio measurement functions. Each function can be
seen as a single test step (or test case) in the TestStand sequence. Therefore, it
should execute a single operation (like a measurement) and return a single value (like
a power level, a bit error rate, etc...). In this case, the measured value can be com-
pared and logged in a single test step in the TestStand sequence, keeping the
sequence short and readable. Some measurement functions may return more than
one value (like an amplitude and a phase) if necessary. In this case, an additional com-
parison step is required in the TestStand sequence.

The library functions should be 'high-level', which means not too simple (requiring a lot
of steps in the sequence to set up a device or to take a measurement) and not too
complicated (returning a bunch of measured values which must be stored by the Test-
Stand sequence and validated by several subsequent steps).

The functions are based on the functionality of the underlying device driver. Depending
on the complexity of the function and the features of the device driver, this may be a
simple call of a single device driver function or a complex piece of code dealing with
several device drivers and a large number of driver calls.

There are a number of benefits to using a high-level library instead of calling a device
driver directly:

● the library can handle more than one device (bench concept)
● the library can switch between different types of devices without modification of the

TestStand sequence (e.g. GSM library: substitution of a CMD55 with a CMU)
● the library implements device sharing between several processes or threads (lock-

ing)
● standard INI-file concept for resource description (physical/application layer)
● standard error handling mechanism, suited for use with TestStand

The required functionality is provided by the Resource Manager library. The resource
manager is one of the central parts of the R&S GTSL software. It coordinates the inter-

Architectural design

Creation of Test LibrariesR&S®GTSL

149User Manual 1143.6450.42 ─ 22

action between all the libraries, especially in parallel test scenarios. Therefore it is
mandatory to include the resource manager in each high-level library.

9.4.3 Interface Design

9.4.3.1 Interface identification and diagrams

A high-level library has the following interfaces:

● Export functions (interface to TestStand sequence)
● Driver calls (interface to device drivers)
● Resource Manager calls (interface to resource manager)
● Resource Description (physical/application layer, via resource manager)
● Function Panel User Interface

Figure 9-2: Interface diagram

9.4.3.2 Export functions

The export function prototype follows the default template for the DLL flexible prototype
adapter, which is defined by National Instruments in the TestStand software. This pro-
totype allows easy integration of the export functions into the TestStand environment,
especially for automatic error handling.

The R&S GTSL template follows the default template, but is more flexible in terms of
the number and types of the parameters.

Naming conventions

Each function of a library begins with the library prefix followed by an underscore char-
acter. The prefix is normally the same as the name of the library and must be written in
uppercase characters. For example, all function names of the GSM library begin with
'GSM_'.

Architectural design

Creation of Test LibrariesR&S®GTSL

150User Manual 1143.6450.42 ─ 22

The function name shall clearly show the action behind it. If the functions are arranged
in groups, the group shall also be part of the function name. For example, the name for
a measurement function for the peak power in non-signaling mode in the GSM library
may be 'GSM_NonSig_Meas_Power_PK'. In this case, 'GSM_' is the library prefix,
'NonSig_' is a function group for non-signaling mode, 'Meas_' is a sub-group for mea-
surement functions, and 'Power_PK' is the parameter to be measured. The function
name is written in mixed uppercase/lowercase with underscores to make it more read-
able.

Function type and calling conventions

The function type is void DLLEXPORT DLLSTDCALL, i.e. there is no return value. The
function is exported to the export library (DLLEXPORT) and the call interface is the
standard call interface (DLLSTDCALL). The DLLEXPORT and DLLSTDCALL defines
are taken from the cvidef.h include file and are compiler independent, while the con-
structs ”__declspec(dllexport)” and ”__stdcall” may be a problem when the compiler is
not LabWindows/CVI or Microsoft Visual C.

Function parameters

sequenceContext The first parameter is always "CAObjHandle
sequenceContext". When a library function is called
from TestStand, the built-in variable "ThisContext" is
passed. When the library is used outside TestStand,
this parameter must be set to zero. The sequence
context allows access to the TestStand sequence
and variables from within the library using the
ActiveX properties and methods of TestStand. Nor-
mally, a high-level library will not use the sequence
context. However, it must be passed to the resource
manager functions as a parameter.

resourceId A number which identifies the resource, i.e. the
bench or device.

The second parameter is the resource ID, which is obtained when the library setup
function is called. The resource ID must be stored in the TestStand sequence after the
call of the setup function, and it must be passed to all subsequent function calls into
the library.

... Additional parameters

Additional parameters like setup parameters and pointers to result values are inserted
in the second, third,... place as required. Input parameters should precede output
parameters.

Architectural design

Creation of Test LibrariesR&S®GTSL

151User Manual 1143.6450.42 ─ 22

pErrorOccurred output parameter, passed by reference

Error flag, is set to 1 if an error occurred, otherwise
0.

pErrorCode output parameter, passed by reference

< 0 : Error code in case of pErrorOccurred = 1

= 0 : Function returned successfully, pErrorOccurred
= 0

> 0 : Indicates a warning when pErrorOccurred = 0.

errorMessage output parameter

The error message will be copied to this buffer in
case of an error or warning, the contents remain
unchanged if the function completes successfully.
The minimum size of this buffer must be
GTSL_ERROR_BUFFER_SIZE (1024 bytes).

The last three parameters are used for error handling in TestStand. They are defined
as 'short *pErrorOccurred', 'long *pErrorCode' and 'char errorMessage[]'.

Example:
The following example shows the prototype of a function for a capacitor measurement.
There are three additional input parameters (measMode, stimVoltage and stimFre-
quency) and two output paramters (capacitance and phase).
void DLLEXPORT DLLSTDCALL SAMPLE_Meas_Capacitance
(CAObjHandle sequenceContext,
long resourceId
int measMode,
double stimVoltage,
double stimFrequency,
double * capacitance,
int * phase
short * pErrorOccurred,
long * pErrorCode,
char errorMessage[]);

Setup function

The setup function is mandatory. The name of the setup function is defined as the
library prefix with underscore followed by the word 'Setup'. The parameter list is shown
below. ResourceName (input parameter) is a character string which identifies the
resource(s) in the application and physical layer INI files. This may be a logical name,
the name of a bench or the name of a device.

ResourceID is an output parameter. If the function returns successfully, a resource ID
for the allocated resources is returned here.

void DLLEXPORT DLLSTDCALL SAMPLE_Setup
(CAObjHandle sequenceContext,
char * resourceName,
long * resourceId,
short * pErrorOccurred,

Architectural design

Creation of Test LibrariesR&S®GTSL

152User Manual 1143.6450.42 ─ 22

long * pErrorCode,
char errorMessage[]);

Cleanup function

The cleanup function is mandatory. The name of the cleanup function is defined as the
library prefix with underscore followed by the word 'Cleanup'. The parameter list is
described in "Function parameters" on page 150, there are no additional parameters.

void DLLEXPORT DLLSTDCALL SAMPLE_Cleanup
(CAObjHandle sequenceContext,
long resourceId
short * pErrorOccurred,
long * pErrorCode,
char errorMessage[]);

Library version function

The library version function is mandatory. The name of the library version function is
defined as the library prefix with underscore followed by the words 'Lib_Version'. This
function may be called any time, i.e. even before calling the setup function. Therefore,
there is no resourceId parameter to this function. The version string is copied to the
string buffer libraryVersion.

void DLLEXPORT DLLSTDCALL RESMGR_Lib_Version
(CAObjHandle sequenceContext,
char libraryVersion[80],
short * pErrorOccurred,
long * pErrorCode,
char errorMessage[]);

9.4.3.3 Device driver interface

The interface to the device driver is mainly dependent on the device driver itself. A
device driver may be conforming to

● the IVI standard
● the VISA standard
● none of the above

and it may be

● written by Rohde & Schwarz
● written by a third party developer

The Resource Manager supports device drivers using the VISA and IVI standards (the
session functions support a data type ViSession, which is the session handle to a VISA
session). Non-standard drivers may be supported as long as there is something com-
parable to the ViSession handle (like a file pointer or handle for a serial interface in the
Windows API, as long as its size does not exceed 32 bits).

A high-level library may deal with more than one device driver in two cases:

Architectural design

Creation of Test LibrariesR&S®GTSL

153User Manual 1143.6450.42 ─ 22

● The library supports several devices as an alternative (e.g. CMD55 or CMU).
● The library requires several devices concurrently to perform a task (e.g. FSE and

SMIQ).

The Setup function of the high-level library must call the Initialize function of the
device(s) and establish a connection to the hardware. It may also be necessary to
setup the device to a known state.

The Cleanup function of the high-level library must call the Close function of the device
driver, closing the connection to the hardware. It may be necessary to reset the device
to a known state before.

Both functions must implement the cooperative session handle concept (seeChap-
ter 9.5.2.2, "Cleanup function", on page 167). This means that the Setup function must
not initialize the driver if a session already exists, and the Cleanup function must not
close the driver if there is still another session open to the device. This concept is
important in parallel test scenarios with device sharing.

9.4.3.4 Resource Manager interface

The Resource Manager interface is described in the RESMGR.HLP file.

How the interface is to be used, will be described in the following sections of this docu-
ment. The SAMPLE project includes the mandatory functions of a high-level library
(Setup, Cleanup, Lib_Version) as well as one measurement function. These functions
show how to use the Resource Manager interface.

9.4.3.5 Resource Description

The syntax of the Resource Description is defined in Chapter 5, "Configuration Files",
on page 21. The resources are described in two INI-file style text files, the physical
layer INI-file and the application layer INI-file.

The physical layer contains physical device information like the device type and the
IEEE address:

[device->CMD55]
Description = Radio Communication Tester CMD55
Type = CMD55
ResourceDesc = GPIB0::15

The application layer contains application-specific information, which may vary for dif-
ferent UUTs:

[LogicalNames]
GSM = bench->Radiocom_GSM
[bench->Radiocom_GSM]
Description = Bench for GSM library
RadioComTester = device->CMD55
Simulation=0

Architectural design

Creation of Test LibrariesR&S®GTSL

154User Manual 1143.6450.42 ─ 22

The Setup function of a high-level library reads the configuration information and deter-
mines the hardware which is actually present. The meaning of these entries is descri-
bed in detail in Chapter 9.5.3, "Resource description", on page 178.

9.4.3.6 Function Panel User Interface

The Function Panel User Interface is an interactive graphical interface that assists the
software developer in understanding what each particular library function does and
how to use the programmatic developer interface to call each function.

See the “National Instruments documentation” for details on the LabWindows/CVI func-
tion panels, the Function Tree Editor and the Function Panel Editor.

The function tree contains the three standard functions Setup, Lib_Version and
Cleanup. The other functions are grouped into subtrees (like Measurement, Configura-
tion, Signaling, Non-signaling etc.).

Figure 9-3: Function tree of the SAMPLE project

There is a function panel window for each function:

Architectural design

Creation of Test LibrariesR&S®GTSL

155User Manual 1143.6450.42 ─ 22

Figure 9-4: Panel window of the SAMPLE_Setup function

The online-help system provides a short description for the library, for each function
and for each parameter:

Figure 9-5: Library Help

Architectural design

Creation of Test LibrariesR&S®GTSL

156User Manual 1143.6450.42 ─ 22

Library Help (in CVI called 'Function Help') gives an overview of the purpose of the
library, lists the hardware requirements (if applicable) and describes the supported
entries in the application and physical layer INI files.

Figure 9-6: Function Help

Function Help gives a short summary of the task of the function.

Architectural design

Creation of Test LibrariesR&S®GTSL

157User Manual 1143.6450.42 ─ 22

Figure 9-7: Parameter Help

9.5 Software Detailed Design

9.5.1 Coding Rules

9.5.1.1 Language

The R&S GTSL software is developed in many different locations worldwide. This
means that the language for code, comments and documentation has to be English
(even for variable names, typedefs, define etc.)

9.5.1.2 Programming environment

Code is written in ANSI C. The target compiler is LabWindows/CVI, where the compiler
options are set to 'Visual C/C++ compatibility'. Non-standard extensions may be used
only if absolutely necessary (like the calling convention and DLL export keywords in
the function prototype).

A high-level library must meet the design specifications for a LabWindows/CVI device
driver library, i.e. it is to be supplied with:

● an include file (.h file)

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

158User Manual 1143.6450.42 ─ 22

● a function panel (.fp file)
● a windows help file (.hlp file)
● an import library file (.lib file)
● a dynamic link library file (.dll file)

9.5.1.3 Templates

The Rohde & Schwarz templates for C modules, include files and function headers
shall be used.

9.5.2 Library reference

9.5.2.1 Setup function

The function call interface of the setup function is described in "Setup function"
on page 151. The setup function has the following tasks:

1. Look up the given resource name in the application layer INI-file and allocate a
resource ID for it.

2. Retrieve the configuration of the bench and device(s) from the INI files.

3. Store configuration-dependent data in a memory block in the resource manager.

4. Open the session(s) in the Resource Manager, initialize the appropriate device
driver(s)and store the session handle(s) in the Resource Manager.

See the source file sample.c in the SAMPLE project for details on the Setup function.

#define SAMPLE_BENCH_DEVICE_ONE "one"
#define SAMPLE_BENCH_DEVICE_TWO "two"
#define SAMPLE_TYPE_ONE "type1"
#define SAMPLE_TYPE_TWO "type2"

typedef struct
{
 int owner; /* memory block owner */
 int typeOne; /* device type one present */
 int typeTwo; /* device type two present */
 int simulation; /* driver simulation */

} BENCH_STRUCT;

void DLLEXPORT DLLSTDCALL SAMPLE_Setup (CAObjHandle sequenceContext,
 char * pBenchName,
 long * pResourceId,
 short * pErrorOccurred,

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

159User Manual 1143.6450.42 ─ 22

 long * pErrorCode,
 char errorMessage[])
{
 char buffer [BUFFER_MEDIUM] = "";
 char traceBuffer [BUFFER_LARGE] = "";
 int resourceType = 0;
 int written = FALSE;
 int matched = FALSE;
 BOOL sessionExists = FALSE;
 BOOL deviceLocked = FALSE;
 BOOL trace = FALSE;
 BENCH_STRUCT * pBench = NULL;
 ViSession sessionHandle = 0;
 ViStatus viStatus = 0;

Allocate the resource

In the first step, the resource name given by the parameter 'benchName' must be
looked up in the configuration file and a resource ID must be allocated for it. Note that
'resourceId' is a pointer to the resource ID (see function call interface above).

/*---/
 / Allocate the resource:
 / Check whether "pBenchName" can be found in the INI files and
 / return a resource ID for the bench. This resource ID is the
 / "ticket" for any subsequent action dealing with this bench.
 /---*/
 RESMGR_Alloc_Resource (sequenceContext, pBenchName, pResourceId,
 pErrorOccurred, pErrorCode, errorMessage);

Retrieve the configuration

In this step, we retrieve some bench properties, bench devices and device properties
and check whether the library can handle them. Here, the trace flag and the resource
type are checked.

/*---/
 / Check for trace flag:
 / The "Trace" key in the bench section is searched and its
 / value is checked. The result is recorded in the static
 / variable trace
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Compare_Value (sequenceContext, * pResourceId, "", RESMGR_KEY_TRACE,
 "1", &trace,
 pErrorOccurred, pErrorCode, errorMessage);
 }
 if (! * pErrorOccurred)
 {
 RESMGR_Set_Trace_Flag (* pResourceId, trace);

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

160User Manual 1143.6450.42 ─ 22

 if (trace)
 {
 RESMGR_Trace (">>SAMPLE_Setup begin");
 RESMGR_Trace ("Tracing for SAMPLE.DLL enabled");
 sprintf (traceBuffer, "Bench name %s -> Resource ID %ld", pBenchName,
 * pResourceId);
 RESMGR_Trace (traceBuffer);
 }
 }

 /*---/
 / Check the resource type:
 / The SAMPLE library requires that pBenchName refers to a bench,
 / not to a single device. It is always recommended to use a bench
 / instead of a device, because a bench makes it easy to add
 / a device in future and to work with alternative devices
 / like a CMD55 or a CMU.
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Get_Resource_Type (sequenceContext, * pResourceId, &resourceType,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {
 if (resourceType != RESMGR_TYPE_BENCH)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = SAMPLE_ERR_NOT_A_BENCH;
 formatError (errorMessage, *pErrorCode, * pResourceId, NULL);
 }
 }
 }

Store configuration-dependent data

In this step, a memory block is created and attached to the resource ID. In this exam-
ple, the memory block keeps a structure where the state of the simulation flag and the
presence of two bench devices is stored.

/*---/
 / Allocate a memory block:
 / The SAMPLE library uses a structure to store some private
 / information along with the resource ID. This information can
 / be retrieved in subsequent calls to the measurement functions.
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Alloc_Memory (sequenceContext, * pResourceId, sizeof (BENCH_STRUCT),
 (void **) (&pBench), pErrorOccurred, pErrorCode,
 errorMessage);
 if (! * pErrorOccurred)

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

161User Manual 1143.6450.42 ─ 22

 {
 /* set the memory block owner field to a unique value
 which identifies the SAMPLE library as the owner of the memory.
 */
 pBench->owner = SAMPLE_ERR_BASE;

 /* set default values */
 pBench -> typeOne = FALSE;
 pBench -> typeTwo = FALSE;
 pBench -> simulation = FALSE;
 }
 }

 /*---/
 / Check supported bench devices:
 / Look for bench device "one" and "two" and check the "Type" key
 / in the device sections of the physical layer.
 / The presence is recorded in the memory block.
 /---*/

 /* 1) bench device 'one', device type 'type1'

 For device 'one', we read the type into a local buffer
 and compare it with the supported values
 */
 if (! * pErrorOccurred)
 {
 RESMGR_Get_Value (sequenceContext, * pResourceId, SAMPLE_BENCH_DEVICE_ONE,
 RESMGR_KEY_TYPE, buffer, sizeof (buffer), &written,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {
 if (written == 0)
 {
 /* no "Type" key entry found */
 * pErrorOccurred = TRUE;
 * pErrorCode = SAMPLE_ERR_NO_TYPE;
 formatError (errorMessage, * pErrorCode, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 }
 }
 if (! * pErrorOccurred)
 {
 if (CompareStrings (buffer, 0, SAMPLE_TYPE_ONE, 0, 0) == 0)
 {
 /* found bench device "one", type "type1" */
 pBench -> typeOne = TRUE;
 if (trace)
 {

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

162User Manual 1143.6450.42 ─ 22

 RESMGR_Trace ("Bench device 'one' of 'type1' found");
 }
 }
 else
 {
 /* no supported type key entry found */
 * pErrorOccurred = TRUE;
 * pErrorCode = SAMPLE_ERR_NO_SUPP_TYPE;
 formatError (errorMessage, * pErrorCode, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 }

 }
 /* 2) bench device 'two', device type 'type2'

 For device 'two' (which is optional) we can do a quick check
 by just calling the function RESMGR_Compare_Value
 */
 if (! * pErrorOccurred)
 {
 RESMGR_Compare_Value (sequenceContext, * pResourceId,
 SAMPLE_BENCH_DEVICE_TWO,
 RESMGR_KEY_TYPE, SAMPLE_TYPE_TWO, &matched,
 pErrorOccurred, pErrorCode, errorMessage);
 }
 if (! * pErrorOccurred)
 {
 if (matched)
 {
 /* found bench device "two", type "type2" */
 pBench -> typeTwo = TRUE;
 if (trace)
 {
 RESMGR_Trace ("Bench device 'two' of 'type2' found");
 }
 }
 }
 }
 /*---/
 / Check for simulation flag:
 / The "Simulation" key in the bench section is searched and its
 / value is checked. The result is recorded in the memory block.
 / Any other library-specific information like calibration,
 / path for calibration files etc. may be handled the same way
 / (not shown in the example).
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Compare_Value (sequenceContext, * pResourceId, "",
 RESMGR_KEY_SIMULATION, "1",

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

163User Manual 1143.6450.42 ─ 22

 &matched, pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {
 if (matched)
 {
 pBench -> simulation = TRUE;
 if (trace)
 {
 RESMGR_Trace ("Simulation is enabled");
 }
 }
 }
 }

Initialize the device driver

The following block of code must be repeated for each device driver. First, the device
is locked to ensure exclusive access during the driver initialization phase. The flag
'deviceLocked' is set to remember the lock state and ensure that the device is properly
unlocked at the end of the setup procedure.

/*---/
 / Lock the device:
 / The device must be locked to prevent another process or thread
 / from accessing it.
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Lock_Device (sequenceContext, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 SAMPLE_TIMEOUT, pErrorOccurred, pErrorCode,
 errorMessage);
 if (! * pErrorOccurred)
 {
 deviceLocked = TRUE;
 }
 }

Next, a device session is opened in the resource manager.

/*---/
 / Open the device session(s): (Not in simulation)
 / For each device in the bench, a session must be opened.
 / The code shown handles only bench device "one". The code for
 / device "two" would be just a copy with some small modifications.
 /---*/
 if (! * pErrorOccurred)
 {
 if (! pBench -> simulation)
 {
 RESMGR_Open_Session (sequenceContext, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE,

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

164User Manual 1143.6450.42 ─ 22

 &sessionExists, &sessionHandle,
 pErrorOccurred, pErrorCode, errorMessage);
 }
 }
 /*---/
 / A device session can be shared among all threads in the same
 / process. This means, that only one thread must initialize the
 / device driver and store the session handle in the resource manager.
 / Other threads can use the same session handle to communicate with
 / the device. This information is returned in the variable
 / "sessionExists". If a session already exists, we are done with
 / the job; The session handle is returned in "sessionHandle" and
 / we can start working with it. If no session exists, we must
 / initialize the device driver and store the session handle.
 /
 / Opening a session increments a "usage counter" for the device
 / in the resource manager data structure. This prevents other
 / threads to call the device driver's close function which would
 / cause the session handle to become invalid as long as we are
 / using it.
 /---*/

The device driver initialization routine is called only if the bench is not in simulation
mode and if no session handle was returned by the resource manager. The device
driver uses the 'ResourceDesc' device property from the physical layer INI file. The
VISA session handle from the device driver is then passed to the resource manager
and stored there.

/*---/
 / Initialize the device driver:
 / If a session handle does NOT exist and we are NOT in simulation
 / mode, we must now initialize the device driver and store the
 / session handle in the resource manager.
 /---*/
 if (! * pErrorOccurred)
 {
 if ((! sessionExists) && (! pBench -> simulation))
 {

 /*---/
 / Read the resource descriptor from the ini file:
 / This is a mandatory key. Without it, it is not possible to
 / initialize the device driver
 /---*/
 RESMGR_Get_Value (sequenceContext, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 RESMGR_KEY_RESOURCE_DESC, buffer, sizeof (buffer),
 &written,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

165User Manual 1143.6450.42 ─ 22

 if (written == 0)
 {
 /* no resource descriptor found */
 * pErrorOccurred = TRUE;
 * pErrorCode = SAMPLE_ERR_NO_RESOURCE_DESC;
 formatError (errorMessage, * pErrorCode, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 }
 }
 /*---/
 / Initialize the device driver:
 / Calling the init function of the device driver
 / with the resource descriptor returns a session handle
 /---*/
 if (! * pErrorOccurred)
 {
 if (trace)
 {
 sprintf (traceBuffer,
 "Initialize device driver with ResourceDesc = %s",
 buffer);
 RESMGR_Trace (traceBuffer);
 }
 viStatus = DRV_init (buffer, 1, 1, &sessionHandle);
 if (viStatus != VI_SUCCESS)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = GTSL_ERR_DRIVER_ERROR;
 formatError (errorMessage, * pErrorCode, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 /* append driver specific error message */
 sprintf (errorMessage + strlen (errorMessage),
 "\nDRV_init failed with status 0x%X", (int) viStatus);
 }
 }
 if (! * pErrorOccurred)
 {
 if (trace)
 {
 sprintf (traceBuffer, "Session handle = %ld", sessionHandle);
 RESMGR_Trace (traceBuffer);
 }
 }
 /*---/
 / Store the session handle
 / The session handle is stored in the resource manager.
 / Other threads in the same process can now open a session
 / and re-use the handle.
 /---*/
 RESMGR_Set_Session_Handle (sequenceContext, * pResourceId,

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

166User Manual 1143.6450.42 ─ 22

 SAMPLE_BENCH_DEVICE_ONE, sessionHandle,
 pErrorOccurred, pErrorCode, errorMessage);
 }
 }

Cleanup and error handling

Depending on the ´deviceLocked´ flag, the device must be unlocked. If an error was
detected in the setup function, the error code and message are written to the trace file.

/*---/
 / Cleanup and error handling
 /---*/
 /*---/
 / Unlock the device
 / The device must be unlocked, otherwise it cannot be accessed
 / from another thread or process.
 /---*/

 if (deviceLocked)
 {
 /*---/
 / be careful not to overwrite the error info in case of
 / a problem before, otherwise it is not reported
 / to the user. Local variables are therefore used here.
 /---*/
 short occ = FALSE;
 long code = 0;
 char msg[GTSL_ERROR_BUFFER_SIZE] = "";

 RESMGR_Unlock_Device (sequenceContext, * pResourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 &occ, &code, msg);
 if ((occ) && (! * pErrorOccurred))
 {
 /* An error occurred during unlock. We report this error ONLY
 if no previous error exists.
 */
 * pErrorOccurred = occ;
 * pErrorCode = code;
 strcpy (errorMessage, msg);
 }
 }
 if (trace)
 {
 if (* pErrorOccurred)
 {
 sprintf (traceBuffer, "Error %ld : %s", * pErrorCode, errorMessage);
 RESMGR_Trace (traceBuffer);
 }
 RESMGR_Trace ("<<SAMPLE_Setup end");

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

167User Manual 1143.6450.42 ─ 22

 }
}

9.5.2.2 Cleanup function

The function call interface of the cleanup function is described in "Cleanup function"
on page 152. The cleanup function has the following tasks:

● Close the device driver(s)
● Free the session in the resource manager
● Release the memory block
● Free the resource ID

See the source file sample.c in the SAMPLE project for details on the Cleanup func-
tion.

void DLLEXPORT DLLSTDCALL SAMPLE_Cleanup (CAObjHandle sequenceContext,
 long resourceId,
 short * pErrorOccurred,
 long * pErrorCode,
 char errorMessage[])
{
 ViSession sessionHandle = 0;
 ViStatus viStatus = 0;
 BENCH_STRUCT * pBench = NULL;
 int canClose = FALSE;
 int deviceLocked = FALSE;
 char traceBuffer [BUFFER_LARGE] = "";
 BOOL trace = FALSE;

 trace = RESMGR_Get_Trace_Flag (resourceId);
 * pErrorOccurred = FALSE;
 * pErrorCode = 0;

 if (trace != 0)
 {
 RESMGR_Trace (">>SAMPLE_Cleanup begin");
 }

Retrieve configuration

Configuration data is stored in a memory block during the Setup function. A pointer to
this memory block is retrieved. The cleanup actions have to be taken depending on the
configuration data.

/*---/
 / Retrieve the memory pointer:
 / Get a pointer to the memory block to check the configuration
 /---*/
 RESMGR_Get_Mem_Ptr (sequenceContext, resourceId, (void * *) (&pBench),
 pErrorOccurred, pErrorCode, errorMessage);

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

168User Manual 1143.6450.42 ─ 22

 /*---/
 / Check for memory block owner:
 / To be sure that the given resource ID belongs to the SAMPLE
 / library, we check the "owner" field of the memory block if it
 / contains the "magic number" we have stored there in the
 / SAMPLE_Setup function
 /---*/
 if (! * pErrorOccurred)
 {
 if (pBench -> owner != SAMPLE_ERR_BASE)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = GTSL_ERR_WRONG_RESOURCE_ID;
 formatError (errorMessage, * pErrorCode, resourceId, NULL);
 }
 }

Retrieve the session

The session handle for each device must be retrieved before the device driver can be
closed. The device must be locked to ensure exclusive access.

/*---/
 / check if type one is present:
 / (code for typeTwo is not included in this example)
 /---*/
 if (! * pErrorOccurred)
 {
 if (pBench -> typeOne)
 {
 /*---/
 / Lock the device:
 / prevent access from other threads or processes to the device
 /---*/
 RESMGR_Lock_Device (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 SAMPLE_TIMEOUT, pErrorOccurred, pErrorCode,
 errorMessage);
 if (! * pErrorOccurred)
 {
 deviceLocked = TRUE;
 }
 /*---/
 / Get the session handle:
 / We need the session handle to close the instrument driver
 / unless we are in simulation mode.
 /---*/
 if (! * pErrorOccurred)
 {
 if (! pBench -> simulation)
 {

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

169User Manual 1143.6450.42 ─ 22

 RESMGR_Get_Session_Handle (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE, &sessionHandle,
 pErrorOccurred, pErrorCode, errorMessage);
 }
 }

Close the session and the driver

The session handle for each device must be retrieved before the device driver can be
closed. The device must be locked to ensure exclusive access.

/*---/
 / Close the session (not in simulation)
 / - Tell the resource manager, that we no longer use this device.
 / If the usage count reachs zero (i.e. no other thread uses
 / the session handle) the resource manager tells us that we
 / are responsible for closing the instrument session. If any
 / other thread in the same process has an open session to the
 / device, it is up to HIM to call the close function of the
 / driver. In this case, it would be a failure if we closed
 / the driver, because this action invalidates the session
 / handle. The other thread would get into large trouble when
 / trying to communicate with the device next time!
 /---*/
 if (! * pErrorOccurred)
 {
 if (! pBench -> simulation)
 {
 RESMGR_Close_Session (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 &canClose, pErrorOccurred, pErrorCode,
 errorMessage);
 }
 }
 if (! * pErrorOccurred)
 {
 if ((canClose) && (! pBench -> simulation))
 {
 /*---/
 / Close the driver
 / We are the last user of the device, so we are responsible
 / for closing the driver
 /---*/
 if (trace)
 {
 RESMGR_Trace ("Close the device driver");
 }
 viStatus = DRV_close (sessionHandle);
 if (viStatus != VI_SUCCESS)
 {
 *pErrorOccurred = TRUE;

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

170User Manual 1143.6450.42 ─ 22

 *pErrorCode = GTSL_ERR_DRIVER_ERROR;
 formatError (errorMessage, *pErrorCode, resourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 /* append driver specific error message */
 sprintf (errorMessage + strlen(errorMessage),
 "\nDRV_close failed with status 0x%X", (int) viStatus);
 }
 }
 }

Free the resource

The device is unlocked, the memory block is released and the resource ID is freed.

/*---/
 / Unlock the device
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Unlock_Device (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {
 deviceLocked = FALSE;
 }
 }
 }
 }
 /*---/
 / Dispose memory:
 / Free the memory block associated with the resource ID.
 / Note that pBench is no longer valid now because it points
 / to dynamic memory that has been released!
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Free_Memory (sequenceContext, resourceId, pErrorOccurred,
 pErrorCode, errorMessage);
 }
 pBench = NULL;

 /*---/
 / Free resource:
 / The resource ID (our "ticket") is given back to the resource
 / manager and may be reused in a subsequent RESMGR_Alloc_Resource
 / call.
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Free_Resource (sequenceContext, resourceId, pErrorOccurred,

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

171User Manual 1143.6450.42 ─ 22

 pErrorCode, errorMessage);
 }
 if (! * pErrorOccurred)
 {
 if (trace)
 {
 sprintf (traceBuffer, "Free Resource ID %ld", resourceId);
 RESMGR_Trace (traceBuffer);
 }
 }

Cleanup and error handling

The device must be unlocked unless this has been done before.

/*---/
 / Cleanup and error handling
 /---*/

 /*---/
 / Unlock the device, if there was an error.
 / If no error occured before, then the device is already unlock
 / (see code above).
 /---*/
 if (deviceLocked)
 {
 /*---/
 / be careful not to overwrite the error info in case of
 / a problem before, otherwise it is not reported
 / to the user. Local variables are therefore used here.
 /---*/
 short occ = FALSE;
 long code = 0;
 char msg[GTSL_ERROR_BUFFER_SIZE] = "";

 RESMGR_Unlock_Device (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 &occ, &code, msg);
 if ((occ) && (! * pErrorOccurred))
 {
 /* An error occurred during unlock. We report this error ONLY
 if no previous error exists.
 */
 * pErrorOccurred = occ;
 * pErrorCode = code;
 strcpy (errorMessage, msg);
 }
 }
 if (trace)
 {
 if (* pErrorOccurred)

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

172User Manual 1143.6450.42 ─ 22

 {
 sprintf (traceBuffer, "Error %ld : %s", * pErrorCode, errorMessage);
 RESMGR_Trace (traceBuffer);
 }
 RESMGR_Trace ("<<SAMPLE_Cleanup end");
 }
}

9.5.2.3 Library version function

The function call interface of the setup function is described in "Library version func-
tion" on page 152. The library version function returns a text string indicating the library
name and the version number of the library. This string is copied into the string buffer
'libraryVersion'. The length must not exceed 80 characters, including the terminating
null character.

The library name is the same as the library prefix.

Example:
SAMPLE 02.00
See Chapter 9.5.4.6, "Version handling", on page 188 for details about version num-
ber handling.
static const char LIB_VERSION[] = "SAMPLE 02.00"; /* Library Version String */

void DLLEXPORT DLLSTDCALL SAMPLE_Lib_Version (CAObjHandle sequenceContext,
 char libraryVersion[],
 short * pErrorOccurred,
 long * pErrorCode,
 char errorMessage[])
{
 * pErrorOccurred = FALSE;
 * pErrorCode = 0;
 strcpy (libraryVersion, LIB_VERSION);
}

9.5.2.4 Measurement functions

The measurement functions follow the call interface described in Chapter 9.4.3.2,
"Export functions", on page 149. The term 'measurement function' includes not only
functions that take measurements, but also any function which communicates with a
stimulus device, a measurement device or the UUT. Such a function may modify
device settings and/or take one or more measurements, dealing with one or more devi-
ces and drivers.

The measurement function in general has the following tasks:

● Get a pointer to the memory block and retrieve configuration data
● Handle simulation mode
● Get the session handle(s) for the device(s)

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

173User Manual 1143.6450.42 ─ 22

● Call the device driver function(s)
● Return the measured value(s)

See the source file sample.c in the SAMPLE project for details on the Measurement
function.

The following example shows a simple measurement function, taking no additional
parameters and returning a single measured value.

void DLLEXPORT DLLSTDCALL SAMPLE_MeasFunc (CAObjHandle sequenceContext,
 long resourceId,
 double * measuredValue,
 short * pErrorOccurred,
 long * pErrorCode,
 char errorMessage[])
{
 ViSession sessionHandle = 0;
 ViStatus viStatus = 0;
 BENCH_STRUCT * pBench = NULL;
 int deviceLocked = FALSE;
 int retVal = 0;
 int retFromFct = 0;
 char traceBuffer [BUFFER_LARGE] = "";
 BOOL trace = FALSE;

 * pErrorOccurred = FALSE;
 * pErrorCode = 0;

 trace = RESMGR_Get_Trace_Flag (resourceId);

 if (trace)
 {
 RESMGR_Trace (">>SAMPLE_MeasFunc begin");

 }

Retrieve configuration data

/*---/
 / Retrieve the memory pointer:
 / The SAMPLE library keeps important information about its
 / configuration in the memory block. This information is
 / associated with the resource ID. If SAMPLE_Setup is called
 / more than once, it returns different resource IDs. That means
 / that each resource ID (i.e. each call of SAMPLE_Setup) has its
 / own copy of the memory block.
 /---*/
 RESMGR_Get_Mem_Ptr (sequenceContext, resourceId, (void * *) (&pBench),
 pErrorOccurred, pErrorCode, errorMessage);
 /*---/
 / Check for memory block owner:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

174User Manual 1143.6450.42 ─ 22

 / To be sure that the given resource ID belongs to the SAMPLE
 / library, we check the "owner" field of the memory block if it
 / contains the "magic number" we have stored there in the
 / SAMPLE_Setup function
 /---*/
 if (! * pErrorOccurred)
 {
 if (pBench -> owner != SAMPLE_ERR_BASE)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = GTSL_ERR_WRONG_RESOURCE_ID;
 formatError (errorMessage, * pErrorCode, resourceId, NULL);
 }
 }

Handle simulation mode

In simulation mode, a default measured value is returned without any interaction with
the device driver.

/*---/
 / Check for simulation:
 / In simulation mode, the device driver must not be called.
 / Just return some value.
 /---*/
 if (! * pErrorOccurred)
 {
 if (pBench -> simulation)
 {
 /* simulation value */
 *measuredValue = STD_SIMU_RESULT;

 if (trace)
 {
 sprintf (traceBuffer, "Simulation value = %f", *measuredValue);
 RESMGR_Trace (traceBuffer);
 }
 }
 else
 }

Retrieve session handle

Depending on the configuration information, the session handles for the required devi-
ces must be retrieved from the Resource Manager. The device must be locked.

/*---/
 / Check for currently used device:
 / The BENCH_STRUCT keeps information about the devices that
 / have been configured during SAMPLE_Setup. We check if device
 / typeOne has been setup.
 / (Code for typeTwo is not included in this example)

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

175User Manual 1143.6450.42 ─ 22

 /---*/

 if (pBench -> typeOne)
 {
 /*---/
 / Lock the device:
 / The device must be locked to prevent another process or
 / thread from accessing it.
 /---*/
 RESMGR_Lock_Device (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE, SAMPLE_TIMEOUT,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {
 deviceLocked = TRUE;
 }
 /*---/
 / Get the session handle
 / Retrieve the session handle for device "one".
 /---*/
 if (! * pErrorOccurred)
 {
 RESMGR_Get_Session_Handle (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE, &sessionHandle,
 pErrorOccurred, pErrorCode, errorMessage);
 }

Device driver call

The device driver is called with the session handle from the Resource Manager.

/*---/
 / Call the driver function(s):
 / It may be necessary to call more than one function.
 / Because the device is locked, we can be sure that no other
 / thread or process can access the device now.
 /---*/
 /*---/
 / Driver function call, Sample 1: (e.g. for CMD)
 /---*/
 if (! * pErrorOccurred)
 {
 viStatus = DRV_meas_1 (sessionHandle, measuredValue);
 if (viStatus != VI_SUCCESS)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = GTSL_ERR_DRIVER_ERROR;
 formatError (errorMessage, *pErrorCode, resourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 /* append driver specific error message */
 sprintf (errorMessage + strlen(errorMessage),

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

176User Manual 1143.6450.42 ─ 22

 "\nDRV_meas failed with status 0x%X\n", (int) viStatus);
 /* read and append driver specific error message */
 retFromFct = DRV_ErrorMessage (sessionHandle, viStatus,
 errorMessage + strlen(errorMessage));
 }
 else
 {
 if (trace)
 {
 sprintf (traceBuffer, "Measured value = %f", *measuredValue);
 RESMGR_Trace (traceBuffer);
 }
 }
 }
 /*---/
 / End of Driver function call, Sample 1
 /---*/

 /*---/
 / Driver function call, Sample 2: (e.g. for CMU)
 /---*/
 if (! * pErrorOccurred)
 {
 viStatus = DRV_meas_2 (sessionHandle, measuredValue, errorMessage);
 if (viStatus != VI_SUCCESS)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = GTSL_ERR_DRIVER_ERROR;
 formatError (errorMessage, *pErrorCode, resourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 }
 else
 {
 if (trace)
 {
 sprintf (traceBuffer, "Measured value = %f", *measuredValue);
 RESMGR_Trace (traceBuffer);
 }
 }
 }
 /*---/
 / End of Driver function call, Sample 2
 /---*/
 }
 }
 }

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

177User Manual 1143.6450.42 ─ 22

Cleanup and error handling

The device must be unlocked if it has been locked before.

/*---/
 / Cleanup and error handling
 /---*/

 /*---/
 / Unlock the device
 / The device must be unlocked, otherwise it cannot be accessed
 / from another thread or process.
 /---*/

 if (deviceLocked)
 {
 /*---/
 / be careful not to overwrite the error info in case of
 / a problem before, otherwise it is not reported
 / to the user. Local variables are therefore used here.
 /---*/
 short occ = FALSE;
 long code = 0;
 char msg[GTSL_ERROR_BUFFER_SIZE] = "";

 RESMGR_Unlock_Device (sequenceContext, resourceId,
 SAMPLE_BENCH_DEVICE_ONE,
 &occ, &code, msg);
 if ((occ) && (! * pErrorOccurred))
 {
 /* An error occurred during unlock. We report this error ONLY
 if no previous error exists.
 */
 * pErrorOccurred = occ;
 * pErrorCode = code;
 strcpy (errorMessage, msg);
 }
 }
 if (trace)
 {
 if (* pErrorOccurred)
 {
 sprintf (traceBuffer, "Error %ld : %s", * pErrorCode, errorMessage);
 RESMGR_Trace (traceBuffer);
 }
 RESMGR_Trace ("<<SAMPLE_MeasFunc end");
 }
}

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

178User Manual 1143.6450.42 ─ 22

9.5.3 Resource description

The physical and application layer INI-files contain the resource description for the test
system. The general structure of these files is described in Chapter 5, "Configuration
Files", on page 21. The key names and the meaning of their values, however, are
defined by the high-level library that uses them. Because most high-level libraries per-
form similar tasks, there is a need for standardization of the resource description.

The following example shows some library-specific entries in boldface:

[LogicalNames]
GSM = bench->Radiocom_GSM

[bench->Radiocom_GSM]
Description = Bench for GSM library
RadioComTester = device->CMD55
Simulation=0

[device->CMD55]
Description = Radio Communication Tester CMD55
Type = CMD55
ResourceDesc = GPIB0::15

There are three different types of resource entries:

1. A link to a device entry (bench device). The key RadioComTester (left side) identi-
fies a device type, which is supported by the high-level library. The value device ->
CMD55 (right side) is the name of the device section, where the properties of the
device can be found.

2. A property of a bench. The key Simulation identifies the simulation property of the
bench, the value 0 means that simulation is switched off.

3. A property of a device. The key ResourceDesc identifies the resource descriptor,
the value GPIB0::15 means that the device can be addressed via GPIB card 0,
address 15.

Because device entries can be referenced by several high-level libraries, there must be
a set of standard properties, which can be understood by each of these libraries. The
same applies to bench properties like simulation or tracing, which are standard proper-
ties and are supported by each library. Only the bench device names are library-spe-
cific.

The following tables describe the standard keys, values and usage.

Table 9-1: Standard bench properties

Key name Remarks

Description bench description, comment

Simulation if set to '1', the complete bench is simulated by the
library

Trace if set to '1', tracing is enabled for the library

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

179User Manual 1143.6450.42 ─ 22

Table 9-2: Standard device properties

Key name Remarks

Description Device description, comment

Type Device type like CMD55, etc. (mandatory).

ResourceDesc VISA resource descriptor like 'GPIB0::15' or
'PXI0::16::0' (mandatory). The given value must be
passed to the device drivers init function (IVI and
VISA).

DriverOption Special setup string for IVI driver, e.g. for device-
level simulation. If this entry is present and the
device driver is an IVI driver, it must be initialized
using the InitWithOptions function, passing the given
setup string. If this entry is missing, the normal Init
function can be used.

The 'Type' and 'ResourceDesc' keys are mandatory, they must be defined for each
device section. All other keys are optional. Binary switches like 'Simulation' and 'Trace'
are activated by the value '1' and deactivated by any other value. The switch is also
deactivated if the key is not present.

The Resource Manager exports the key names in the resmgr.h file as
RESMGR_KEY_... constants, e.g. RESMGR_KEY_SIMULATION for 'Simulation'.
There is also a list of common device types; these string constants begin with
RESMGR_DEVTYPE_...

9.5.4 Miscellaneous

9.5.4.1 Error handling

Error handling is done through the three output parameters pErrorOccurred, pError-
Code and errorMessage of each export function of the library as described in "Function
type and calling conventions" on page 150.

There are several possible sources of an error:

● Error from the high level library
● Error from a support library, e.g. the resource manager
● Error from a device driver

The pErrorCode and errorMessage should reflect the source and the reason of an
error, so the user can take appropriate measures to eliminate the problem. The error
codes should be unique throughout the R&S GTSL software to avoid confusion. This
means, that each library has its own set of error codes. The error message should also
state very clearly, which library issued the error, the name of the bench and the bench
device. The following figure shows an example of an error message as it is shown in
TestStand:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

180User Manual 1143.6450.42 ─ 22

Figure 9-8: Run-Time error message in TestStand

The first lines (not shown above) list the name of the sequence and the step. After that,
the contents of the errorMessage variable is shown, followed by the decimal represen-
tation of the pErrorCode (the last line).

The error message is broken into several lines, each beginning with a prefix like
'Library', 'Bench' etc. The error message may contain additional information like the
driver status code in the example above.

Include files

Error codes are defined in the include file of the high level library. All error codes are
based on a base number, which is defined in GTSLERR.H. It is important to include this
file in the include file for the high level library. The following code is taken from the
sample.h file:

#include 'gtslerr.h' /* GTSL error handling */

/* DEFINES ***/

/* Error codes */
#define SAMPLE_ERR_BASE GTSL_ERROR_BASE_SAMPLE
#define SAMPLE_ERR_NOT_A_BENCH (SAMPLE_ERR_BASE - 1) /* -4001 */
#define SAMPLE_ERR_NO_RESOURCE_DESC (SAMPLE_ERR_BASE - 2) /* -4002 */

GTSL_ERROR_BASE_SAMPLE is defined in gtslerr.h as -4000. If a new high-
level library is developed, a new GTSL_ERROR_BASE_XXX constant has to be
defined. Use the constant GTSL_ERROR_BASE_USER as a base for error codes in
your own projects. Codes between 0 and GTSL_ERROR_BASE_USER are reserved
for libraries developed by Rohde & Schwarz..

The gtslerr.h include file defines several general-purpose error codes and mes-
sages which can be used in all high-level libraries. Library-specific error codes are
defined as constants in the include-file of the library. The names start with
XXX_ERR_... where XXX is the library name. The integer error numbers should be

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

181User Manual 1143.6450.42 ─ 22

written in comment after each definition (remember not to use the '//' comment delim-
iter !!!). This makes it easy for the user to find the error definition by just doing a 'grep'
or file search over all include files.

Error table

A table of error codes and corresponding error messages is kept in a static structure
array in the high-level library. The type definitions GTSL_ERROR_TABLE and
GTSL_ERROR_ENTRY can be found in gtslerr.h. This error table contains the
library-specific codes and messages as well as all general-purpose codes:

/* Error code to message reference table */
static GTSL_ERROR_TABLE errorTable =
{
 /* library specific error codes and messages */
 {
 SAMPLE_ERR_NOT_A_BENCH, "The given resource is not a bench" },
 {
 SAMPLE_ERR_NO_RESOURCE_DESC, "ResourceDesc entry missing in physical INI file" },
 {
 SAMPLE_ERR_NO_TYPE, "Type entry missing in physical INI file" },
 {
 SAMPLE_ERR_NO_SUPP_TYPE, "Type entry in physical INI file is not supported" },

 /* include common GTSL error codes and messages */
 GTSL_ERROR_CODES_AND_MESSAGES,

 /* this must be the last entry ! */
 {
 0, NULL }
};

The table initialization consists of three parts

● library-specific codes and corresponding messages
● common error codes and messages (represented by

GTSL_ERROR_CODES_AND_MESSAGES macro)
● the terminating entry { 0, NULL }

Signaling an error

The following examples show different cases of how errors are signaled and handled.
The simplest case is an error coming from a lower level library like the resource man-
ager:

RESMGR_Get_Resource_Type (sequenceContext, * pResourceId, &resourceType,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {

 }

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

182User Manual 1143.6450.42 ─ 22

The three error parameters pErrorOccurred, pErrorCode and errorMessage are just
passed from the resource manager library. In case of an error in the resource man-
ager, all error information has already been set. The high-level library just checks the
pErrorOccurred flag and skips the following code if the flag is set.

When the high-level library detects an error, it sets the pErrorOccurred flag and the
pErrorCode variable and calls an internal function 'formatError' which builds the error
message from the given information and copies it into errorMessage.

if (resourceType != RESMGR_TYPE_BENCH)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = SAMPLE_ERR_NOT_A_BENCH;
 formatError (errorMessage, *pErrorCode, * pResourceId, NULL);
 }

The parameter interface and the implementation of the format_error function in the
SAMPLE library are just a proposal. Some libraries need some more elaborate error
message generation and, perhaps, additional parameters to this function. See the fol-
lowing section for details on this function.

When an error occurs in a device driver function, the driver error status cannot just be
returned as pErrorCode, because drivers use a somewhat different numbering
scheme. Therefore, a general GTSL_ERR_DRIVER_ERROR code is returned and the
error status from the driver is appended to the error message in hex display. Most driv-
ers offer a function to convert the status value to an error string. This function is called
here to append the driver-specific error message at the end:

if (! * pErrorOccurred)
 {
 viStatus = DRV_meas_1 (sessionHandle, measuredValue);
 if (viStatus != VI_SUCCESS)
 {
 * pErrorOccurred = TRUE;
 * pErrorCode = GTSL_ERR_DRIVER_ERROR;
 formatError (errorMessage, *pErrorCode, resourceId,
 SAMPLE_BENCH_DEVICE_ONE);
 /* append driver specific error message */
 sprintf (errorMessage + strlen(errorMessage),
 "\nDRV_meas failed with status 0x%X\n", (int) viStatus);
 /* read and append driver specific error message */
 retFromFct = DRV_ErrorMessage (sessionHandle, viStatus,
 errorMessage + strlen(errorMessage));
 }
 }

The code is very similar to the example above, except that the sprintf and
DRV_error_message function calls have been added to append the driver function
name, the status and the driver-specific error message.

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

183User Manual 1143.6450.42 ─ 22

Formatting the error message

The format_error function shown here is just an example of how it can be done. Each
high-level library may require a different set of parameters. The main task of this func-
tion, however, is always the same: Generate the error message and put it into the error
buffer.

static void formatError (char buffer[],
 int code,
 long resId,
 char * benchDevice)
{
 char * pMsg = NULL;
 char resourceName[RESMGR_MAX_NAME_LENGTH + 1] = "";
 char tempMsg[GTSL_ERROR_BUFFER_SIZE] = "";
 short tempOcc = FALSE;
 long tempCode = 0;
 int written = 0;
 GTSL_ERROR_ENTRY * pErr = errorTable; /* pointer into error entry table */

First, the error message corresponding to the given code must be searched in the error
table:

/* find the error message for a given error code */
 while (pErr -> string != NULL)
 {
 if (pErr -> value == code)
 {
 pMsg = pErr -> string;
 break;
 }
 pErr ++;
 }
 if (pMsg == NULL)
 {
 /* should never happen */
 pMsg = "(no message available for this code)";
 }

Next, the error message is built line by line:

/* setup the error message */

 /* 1) Library name */
 strcpy (buffer, GTSL_ERRMSG_PREFIX_LIBRARY);
 strcat (buffer, GTSL_LIBRARY_NAME);
 strcat (buffer, "\n");

The name of the bench is returned by the resource manager function
RESMGR_Get_Resource_Name. It takes the resource ID as a parameter. In this
example, the parameter resid may be set to RESMGR_INVALID_ID. In this case, the
line 'Bench: ' will not be output:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

184User Manual 1143.6450.42 ─ 22

/* 2) Bench name, only if a valid ID is given */
 if (resId != RESMGR_INVALID_ID)
 {
 /* read the resource name into a local buffer */
 RESMGR_Get_Resource_Name (0, resId, resourceName, sizeof (resourceName),
 &written, &tempOcc, &tempCode, tempMsg);
 if ((! tempOcc) && (written > 0))
 {
 /* append the name */
 strcat (buffer, GTSL_ERRMSG_PREFIX_BENCH);
 strcat (buffer, resourceName);
 strcat (buffer, "\n");
 }
 }

If the parameter bench_device is not NULL, it is output in the next line:

/* 3) Bench device, if given */
 if (benchDevice != NULL)
 {
 strcat (buffer, GTSL_ERRMSG_PREFIX_BENCH_DEVICE);
 strcat (buffer, benchDevice);
 strcat (buffer, "\n");
 }

Finally, the error message is appended to the message buffer:

/* 4) Error message */
 strcat (buffer, GTSL_ERRMSG_PREFIX_ERRMSG);
 strcat (buffer, pMsg);

9.5.4.2 Locking

The implementation of device locking is mandatory for each high-level library. Locking
is done using the RESMGR_Lock_Device and RESMGR_Unlock_Device functions of
the Resource Manager Library.

The Setup, Cleanup and Measurement functions must lock a device prior to the first
driver call and unlock the device after the last driver call inside the function to ensure
exclusive access to the device.

See RESMGR.HLP and the source code of the SAMPLE project for details.

Special care must be taken to guarantee the same number of lock and unlock calls
inside the functions, also in case of an error returned by a fubction call. If a device is
not unlocked correctly, it may stay locked forever, blocking another parallel test proc-
ess.

The lock function requires a timeout value, i.e. the maximum amount of time which is
spent waiting for the device to become free. This value must be selected depending on
the maximum time it takes for a measurement with this device. A standard value is
5000 ms. The timeout value should not exceed about 20 or 30 seconds, this is the
maximum time a user is willing to wait for a reaction of the system.

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

185User Manual 1143.6450.42 ─ 22

9.5.4.3 Tracing

During the development phase of a library module, the tracing of information is an
important feature. The Resource Manager offers convenient functions for tracing,
which can be used with the following benefits:

● No need to write additional code
● Tracing can be switched on and off dynamically
● Tracing from different libraries is directed to a single output file or to screen

See the description of the RESMGR_Trace function and Set/Get TraceFlag in
RESMGR.HLP for details.

● Tracing may be enabled in two ways:
● by a compiler switch in the high-level library
● by the 'Trace = 1' entry in the application INI file

Using a compiler switch allows tracing during the development and debug phase. Trac-
ing is then switched off for the release version. There is no performance loss in the
release version, but there is also no easy way to re-enable tracing at a customer site in
case of a problem. The library must be rebuilt with the compiler switch, which is a prob-
lem because the customer normally does not have the source code.

Using an entry in the application INI file is more convenient, because tracing may be
enabled easily by adding the line 'Trace = 1' in the appropriate bench section of the INI
file. The performance degradation can be kept to a minimum if a tracing flag is used in
each function as shown in the following code example:

BOOL trace = FALSE;

In the Setup function, the 'Trace' property of the bench is checked and the flag is set:

RESMGR_Compare_Value (sequenceContext, * pResourceId, "", RESMGR_KEY_TRACE, "1", &trace,
 pErrorOccurred, pErrorCode, errorMessage);

At the beginning of each other function the actual value of the trace flag is read:

trace = RESMGR_Get_Trace_Flag (resourceId);

Depending on the flag, tracing is done:

if (trace)
{
 RESMGR_Trace ("Close the device driver");
}

Formatted output cannot be done in the RESMGR_Trace function directly. A temporary
trace buffer is used to format the message first:

#define BUFFER_LARGE 1088
char traceBuffer [BUFFER_LARGE] = "";
if (trace)
{
 sprintf (traceBuffer, "Measured value = %f", *measuredValue);

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

186User Manual 1143.6450.42 ─ 22

 RESMGR_Trace (traceBuffer);
}

9.5.4.4 Simulation

The implementation of simulation is mandatory for each high-level library. The reasons
for running a library in simulation mode are:

● A sequence can be programmed and tested without hardware.
● Parallel tests can be programmed and run if only a single set of hardware is availa-

ble. One test process uses the real hardware, the others run in simulation mode.
● Presentation of a test sequence to a customer without hardware (e.g. on a laptop).

Simulation is done at a very high level in the library. During simulation mode, the high-
level library must not call any device driver function or any other function requiring
more than the standard PC hardware resources. The library functions should return
some 'typical' measured values to generate a 'Pass' condition in the calling TestStand
sequence.

Simulation is enabled by the 'Simulation' keyword in the appropriate bench section.
The simulation flag for each bench must be kept in the memory block associated with
the resource ID. In contrast to the tracing capability (refer to Chapter 9.5.4.1, "Error
handling", on page 179), the usage of a static simulation flag is not allowed. The follow-
ing code example shows how simulation is handled.

In the Setup function, the presence of the 'Simulation' keyword is checked and the
value of the simulation flag is stored in the memory block:

/* NOTE: error handling is omitted in this short example */

typedef struct
{
 /* ... other entries ... */
 int simulation; /* driver simulation */
} BENCH_STRUCT;

/* pointer to the memory block */
BENCH_STRUCT * pBench = NULL;

/* allocate the memory block */
RESMGR_Alloc_Memory (sequenceContext, * pResourceId, sizeof (BENCH_STRUCT),
 (void * *) (&pBench), pErrorOccurred, pErrorCode, errorMessage);

/* set the simulation flag in the memory block */
/* according to the 'simulation' bench property */
pBench -> simulation = FALSE;
RESMGR_Compare_Value (sequenceContext, * pResourceId, "", RESMGR_KEY_SIMULATION, "1",
 &matched, pErrorOccurred, pErrorCode, errorMessage);
if (matched)
{

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

187User Manual 1143.6450.42 ─ 22

 pBench -> simulation = TRUE;
}

Each measurement function must read the value of the simulation flag and determine
whether to simulate the measurement or take the measurement with the real hardware:

/* NOTE: error handling is omitted in this short example */

/* pointer to the memory block */
BENCH_STRUCT * pBench = NULL;

/* get the memory block pointer */
RESMGR_Get_Mem_Ptr (sequenceContext, resourceId, (void * *) (&pBench),
 pErrorOccurred, pErrorCode, errorMessage);

/* check for simulation flag */
if (pBench -> simulation)
{
 measuredValue = 1.0; / simulation value */
}
else
{
 /* call the device driver to get a value from the instrument ... */
}

9.5.4.5 Bench versus device

When a high-level library requires the concurrent use of more than one device, these
devices must be entered in a bench section. On the other hand, there may be a case
where a library uses only a single device. Is there a reason to have a bench with only
one device entry or could I just pass the name of this device to the library?

Even if only a single device is used, a bench has many advantages:

● A bench can have bench properties like simulation and tracing, a device does not
have these properties.

● The library may be extended in the future to support more than one device. Migra-
tion from a device section to a bench section is harder than just adding the second
device to the bench section which already exists.

Summary: It is most advantageous to work with benches, even if there is only a single
device in the bench.

The high-level library must check in the Setup function to see if the resource name
refers to a bench or to a device and return an error if the type is not correct:

RESMGR_Get_Resource_Type (sequenceContext, * pResourceId, &resourceType,
 pErrorOccurred, pErrorCode, errorMessage);
 if (! * pErrorOccurred)
 {
 if (resourceType != RESMGR_TYPE_BENCH)
 {
 * pErrorOccurred = TRUE;

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

188User Manual 1143.6450.42 ─ 22

 * pErrorCode = SAMPLE_ERR_NOT_A_BENCH;
 formatError (errorMessage, *pErrorCode, * pResourceId, NULL);
 }
 }

9.5.4.6 Version handling

The version number of a library is handled in two separate places. First, there is a ver-
sion string which is returned by the Lib_Version Function. Second, there is a built-in
version number in each DLL, which can be set during the DLL build.

The version number consists of four digits, the first two digits being separated by a
decimal point. The first two digits indicate the major version of the software (with lead-
ing zero). It is incremented if the functionality changes significantly. The third and
fourth digit indicate the minor version. The last digit is normally zero for a software
release with new functions and is incremented for bug fix releases.

Whenever the version of a library changes, the correct version number must be speci-
fied during the build of the DLL. The version number of the DLL is very important for
the software setup program. The setup program can ensure that a newer DLL version
is not overwritten by an old one using the built-in version number. The version informa-
tion for a DLL can be shown in the 'Properties' dialog box in the Windows XP/ Windows
7 Explorer (only the text information). Setup programs uses the numeric 'File Version'
information.

The following figure shows the dialog box for the DLL version information:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

189User Manual 1143.6450.42 ─ 22

Figure 9-9: Version Info during DLL build

The following fields must be modified to build a new DLL version:

File Version (numeric) only the first three digits are used for the version
number

Product Version (numeric) like File Version

File Version (text) Version number like in the Library Version function

Product Version (text) same as file version

The following example shows the hypothetical life cycle of the 'SAMPLE' library. Note
that the version number must grow from release to release.

Version String Version number Comment

SAMPLE 01.00 1,0,0,0 first official release

SAMPLE 01.01 1,0,1,0 bug fixes

SAMPLE 01.02 1,0,2,0 more bug fixes

SAMPLE 01.10 1,1,0,0 official release

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

190User Manual 1143.6450.42 ─ 22

Version String Version number Comment

SAMPLE 01.11 1,1,1,0 bug fixes

SAMPLE 02.00 2,0,0,0 official release with new function-
ality

SAMPLE 02.10 2,1,0,0 official release

9.5.5 CVI project structure

Do not modify the original Library project. Instead, make a copy of the Libraries direc-
tory and make your modifications in the copy.
Be careful when you put your private DLLs in the gtsl\bin directory. Always keep a
copy, because they may be overwritten by an update to R&S GTSL if there is a DLL
with the same name. It is safer to keep your projects and DLLs in a completely sepa-
rate location beside the R&S GTSL tree. Be sure to add the directory where your DLLs
reside to the PATH environment variable of your computer.

9.5.5.1 Directory structure

The directory structure of the R&S GTSL software is as follows:

GTSL is the root directory of the tree. It may be located anywhere in the system, e.g.
under C:\Program Files\GTSL or E:\GTSL.

Bin contains the following files for all libraries and drivers:

Figure 9-10: R&S GTSL directory tree

● .DLL, Dynamic Link Library
● .LIB, Import Library for the DLL, Microsoft C/C++ compatible
● .FP and .SUB, CVI Function Panel
● .HLP, Windows Help File
● .CDD, CVI DLL Debugger Information (for development versions only)

Include contains the (include.h) files for all libraries and drivers.

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

191User Manual 1143.6450.42 ─ 22

Develop contains all files required to build the libraries and drivers. There is a separate
subtree for the libraries and one for the drivers. Each library or driver project has its
own directory, like UUTLIB and SAMPLE in Figure 9-10.

9.5.5.2 CVI project files

Figure 9-11: CVI project window

A library project under CVI contains the following files:

● The source file(s) for the library (sample.c)
● The function panel for the library (sample.fp)
● The include file containing the library export functions (sample.h)
● The function panel files for all subsidiary libraries and drivers (resmgr.fp). These

files are taken from the Bin directory.

9.5.5.3 Configuration

The system must known the location of the Bin and Include directories in order to work
correctly with the R&S GTSL software.

The Bin directory must be added to the PATH environment variable. This is done by
the Setup program when you install R&S GTSL on your computer. When a library DLL
requires a subsidiary DLL (like SAMPLE requires the RESMGR.DLL), the operating sys-
tem finds the subsidiary DLL using the standard DLL search algorithm. If the Bin direc-

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

192User Manual 1143.6450.42 ─ 22

tory is not included in the PATH, SAMPLE cannot find the RESMGR.DLL and fails if it is
loaded. This must be done for a development system as well as for a run-time system.

Figure 9-12: Setting the PATH variable

You may add the Bin directory to the Path system variables in the upper part of the
dialog box (for all users of the computer: preferred setting) or in the lower part (only for
the current user).

The Include directory must be added to the list of include paths in the CVI development
environment. This can be done using the Options... Include Paths command:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

193User Manual 1143.6450.42 ─ 22

Figure 9-13: Adding the Include Path

You may enter the Include directory in the upper part of the dialog box (specific to the
current project: preferred setting) or in the lower part (applied to all projects).

9.5.5.4 Building the DLL

The project settings for a high-level library are shown in the following figure:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

194User Manual 1143.6450.42 ─ 22

Figure 9-14: Build settings

The Target Type must be set to Dynamic Link Library.

Configuration is normally set to Debug during the development phase of the library, it is
set to Release for the release version.

The Target Settings dialog box is shown below:

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

195User Manual 1143.6450.42 ─ 22

Figure 9-15: Target Settings dialog

Build...Create Release Dynamic Link Library starts the building process
for the DLL. The DLL file is built in the project directory. Note that the necessary files
(DLL, LIB, CDD) must be copied manually to the Bin directory after the build.

How to complete the Version Info dialog box is shown in Figure 9-9 in Chapter 9.5.4.6,
"Version handling", on page 188.

In Import Library Choices, check the current compatibility mode (which must be Micro-
soft Visual C/C++). Only a single LIB file is generated with this option.

Figure 9-16: DLL Import Library Choices

The Type Library dialog must be completed like shown in the following figure. Adding
the type library resource to the DLL enables TestStand to access the function names
and prototypes in the DLL. The links to the help file enables TestStand to show func-

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

196User Manual 1143.6450.42 ─ 22

tion help for each function in the DLL. The path of the function panel file is the same as
the path for the project. Note that the FP file must be copied to the Bin directory man-
ually.

Figure 9-17: Type Library

The Add Files To DLL dialog is not required for build of the high-level library.

The Export Options are set to Symbols Marked for Export. All library functions marked
with DLLEXPORT are exported from the DLL.

Figure 9-18: DLL Export Options

9.5.5.5 Building Help

Open the FP file for the high-level library and apply the command Options ...
Generate Documentation ... Windows Help.

Software Detailed Design

Creation of Test LibrariesR&S®GTSL

197User Manual 1143.6450.42 ─ 22

Figure 9-19: Generate Windows Help

Check the "Create Help File" option and select "C" for the language. After pressing the
"OK" button, the HLP file is created from the information in the FP file. Note that the
HLP file must be copied to the BIN directory manually.

9.6 SAMPLE project

The SAMPLE project shows how a library interacts with the resource manager during
setup, measurement and cleanup. It consists of a sample sequence and a CVI project
which creates a DLL. The C source code contains comments for each step and may be
used as a framework to build a high-level library.

The sample project is available in the following
path:...\Gtsl\Develop\Libraries\Sample

SAMPLE project

Creation of Self Test LibrariesR&S®GTSL

198User Manual 1143.6450.42 ─ 22

10 Creation of Self Test Libraries
Knowledge of C programming is needed to create self test libraries.
Do not modify the original Sample Self Test Library project. Instead, make a copy of
the sftcsample directory and make your modifications in the copy.

Be careful when you put your private DLLs in the gtsl\bin directory. Always keep a
copy, because they may be overwritten by an update to R&S GTSL if there is a DLL
with the same name. It is safer to keep your projects and DLLs in a completely sepa-
rate location beside the R&S GTSL tree. Be sure to add the directory where your DLLs
reside to the PATH environment variable of your computer.

10.1 Scope

10.1.1 Identification

This guide describes how to write a self test library for the R&S GTSL software.

10.1.2 System overview

Figure 10-1: R&S GTSL Software Overview

A self test library offers a group of functions which cover the needs for testing a spe-
cific device or some equipment in a test system.

The library functions are called from a test sequencer. The functions themselves inter-
act with the resource manager library, the self test support library and the device
driver(s).

Scope

Creation of Self Test LibrariesR&S®GTSL

199User Manual 1143.6450.42 ─ 22

This chapter describes, how a self test library interacts with the R&S GTSL software
and how to write such a library.

10.2 Referenced documents

[RESMGR] Resource Manager online help file (resmgr.hlp)

[SFTSUP] Self Test Support Library online help file (sft.hlp)

[INSTR] LabWindows/CVI Instrument Driver Developers
Guide, National Instruments, February 1998 Edition

10.3 Overview

The design of any R&S GTSL self test library must meet the following requirements:

● The library must be delivered as a Dynamic Link Library (DLL), including type
library information and a function panel

● The name of a system self test library starts with sfts
● The name of a customer self test library starts with sftc
● The function call interface must follow the template.
● The library must use the resource manager functions (if applicable).
● The library must use the self test support library functions (if applicable).

These requirements are described in detail in the following sections.

10.3.1 Test System Configuration

The self test of a production test system based on the TSVP platform must be able to
verify the correct functionality of the complete system. The self test library must be able
to identify and report a defective part or component in the system. A part may be a
device (like a CMU or a power supply), a cable (connecting a CMU to a relay card or to
the fixture), a fixture or any other component inside the system (a serial or parallel
interface) or outside the system (e.g. a barcode reader). A component may be a built-in
card (like a relay card R&S TS-PRL1 or a PXI multimeter card) or an option in a device
like CMU.

The actual configuration of the production test system can vary in a wide range. The
only common part of all systems is the TSVP frame:

Overview

Creation of Self Test LibrariesR&S®GTSL

200User Manual 1143.6450.42 ─ 22

Figure 10-2: Production Test Systems based on the TSVP Platform

The concept for the TSVP self test provides functions to identify the testable compo-
nents and to test these components. This can be done easily because there are no
cross-tests between the components. Each component can be tested independent on
the others, and the test is well defined. The self test software of a TSVP standard com-
ponent is not open to the user, because there is no need to modify it.

On the other hand, the system and overall self test must be open to the user, because
we do not known today, how each system will look at the customer site tomorrow. If a
test system is modified and expanded by a system integrator, he is also responsible to
supply the corresponding self test software part for it.

10.3.2 Self Test Levels

There are several levels of self test:

The module self test ensures that a module (e.g. a CPCI card) inside the TSVP frame
is working well. The only resources for the module self test are the module under test
itself, a self test board on the front connector of the module (if necessary) and the
TSVP system/self-test instrumentation. A module self test will be supplied for each
card developed by Rohde & Schwarz (e.g. R&S TS-PAM, R&S TS-PMB etc.).

The system self test consists of the TSVP self test and further tests, including the
external devices (e.g. GPIB bus devices), the cabling between the devices and the
TSVP frame. The system self test is specific to a standard test system like the TS7100
GSM. The system self test may use any resource which has been tested before. This
is necessary to perform the cabling test.

The overall self test consists of the system self test and includes tests for customer-
specific extensions and modifications of the system like fixture tests, environment tests
(e.g. external interfaces, barcode readers, line integration etc.)

Overview

Creation of Self Test LibrariesR&S®GTSL

201User Manual 1143.6450.42 ─ 22

Figure 10-3: Self Test Levels

The inner levels are independent from the actual system configuration to a great
extent, that means that the TSVP module self test will run on all systems. The outer
levels are very system-specific and have to be customized for each system.

10.4 Software architectural design

10.4.1 Software Components

The basic components of each self test library are:

● sftxyz.h include file
● sftxyz.lib import library
● sftxyz.dll dynamic link library
● sftxyz.fp LabWindows CVI function panel
● sftxyz.c source file
● sftxyz.prj CVI project file
● ... additional source/include files (if applicable)

10.4.2 Concept of Execution

The basic self test concept is not very different from any other test application. There is
a test sequence, there is a set of DLLs where the test cases are coded, there is the
Resource Manager which coordinates the actions and there are the device drivers
which connect the software to the devices. This makes it easy for the user, since there
is no difference between loading and running a test program and running the self test.
It makes it easy for the programmer, since the self test libraries are written the same
way as the high-level test libraries.

Software architectural design

Creation of Self Test LibrariesR&S®GTSL

202User Manual 1143.6450.42 ─ 22

The self test is configured by entries in the Resource Manager's physical and applica-
tion INI files. The physical layer describes the devices, the application layer contains
information about the parts to test, the self test benches and options.

10.4.2.1 Self Test Sequence

The self test sequence calls functions from the standard and customer self test libra-
ries:

Figure 10-4: Self Test Sequence

What is the difference between a function in a self test library and a function in a
device driver? Why don't we call the device driver from the sequence directly? There is
a number of benefits using a self test library instead of calling a device driver directly:

● the library can handle more than one device (bench concept)
● the library can switch between different types of devices without modification of the

TestStand sequence (e.g. GSM library: substitution of a CMD55 with a CMU)
● standard INI-file concept for resource description (physical/application layer)
● standard error handling mechanism, suited for use with TestStand
● the library can handle the provided functions of the self test support library more

effective

The required functionality is provided by the Resource Manager library (see
[RESMGR]) and the self test support library (see [SFTSUP]). These libraries are the
central parts of the R&S GTSL self test software. They coordinate the interaction
between all the self test libraries. Therefore it is mandatory to use them in each self
test library.

10.4.2.2 TSVP Self Test

The TSVP self test is completely kept outside the self test sequence, because it may
become quite complex. The TSVP self test must identify all testable modules, load the

Software architectural design

Creation of Self Test LibrariesR&S®GTSL

203User Manual 1143.6450.42 ─ 22

module SFT libraries and call the appropriate test functions. This task is better imple-
mented in C, because test sequencer level is not suitable. The TSVP self test consists
of the TSVP Self Test Frame and a TSVP Module Self Test for each type of hardware
module.

This part of the self test is not a subject of this document.

10.4.2.3 Standard Self Test Libraries

The Standard Self Test Libraries offer functions for testing standard devices and
cabling. Each function is called directly from the self test sequence.

Figure 10-5: Standard Self Test Libraries

Standard self test functions are grouped into several libraries. The functions communi-
cate with the self test support library, the Resource Manager and the device drivers.
These libraries are very similar to the "high-level libraries" described in Chapter 9,
"Creation of Test Libraries", on page 146. A self test library may also call any other
high level library (like the switch manager) to perform it’s task.

10.4.2.4 Customer Self Test Libraries

Customer Self Test Libraries are implemented the same way as standard self test
libraries, except that they are written by the customer or an integration center. These
libraries contain tests for "non-standard" system extensions.

10.4.2.5 Self Test Support Library

The self test support library contains common functions for all other self test libraries,
like writing to a report file, dialog boxes, basic measurements etc. (see [SFTSUP]).

Software architectural design

Creation of Self Test LibrariesR&S®GTSL

204User Manual 1143.6450.42 ─ 22

10.4.2.6 Configuration Information

The self test uses the configuration information from the physical and application layer
INI files. The physical layer describes the devices and device types. The application
layer INI file describes the self test benches, user options and selectable self test parts.

10.4.3 Interface design

10.4.3.1 Interface Identification and Diagram

Figure 10-6: System/Overall Self Test Interfaces

10.4.3.2 Standard/Customer SFT Call Interface

The Standard/Customer SFT Call Interface conforms to the rules for the interfaces for
high-level libraries and is described in chapter 9.

Because the library normally exports only a single self test function, it is legal to omit
the Setup and Cleanup functions from the call interface and include them at the begin-
ning and at the end of the self test routine. A XXX_Lib_Version() is also not necessary
because the actual version of a self test library is written directly to the report file.

10.4.3.3 Resource Manager Call Interface

The Resource Manager Call Interface is described in [RESMGR]. The SFT libraries
use this interface to access information from the configuration INI files and to handle
resource ID’s, session handles and locking.

Software architectural design

Creation of Self Test LibrariesR&S®GTSL

205User Manual 1143.6450.42 ─ 22

10.4.3.4 Device Driver Call Interface

The Device Driver Call Interface is defined by the IVI, VISA or other device drivers for
the modules under test.

10.4.3.5 High Level Library Call Interface

See Chapter 10.4.3, "Interface design", on page 204.

10.4.3.6 SFT Support Library Call Interface

The SFT Support library provides a Setup and a Cleanup function. The Setup function
must be called from the SFT sequence before any other function (TSVP self test, stan-
dard and customer self test function) can be called. The Cleanup function must be
called at the end of the self test sequence.

The Setup function initializes the library and reads configuration information from the
application layer and physical layer INI files. Information about the run-time state of the
self test is also initialized in this function. Next, it calls the Dialog function which dis-
plays a dialog window where the user can set the self test options. A list of all available
self test parts is displayed which can be selected or deselected. When the user closes
the dialog window, the information is stored in the run-time state of the self test support
library and all self test libraries can read that information.

A set of Get/Set Attribute functions is provided to access and modify the run-time
state of the library. These functions can be called by the self test modules to get infor-
mation about the selected SFT options and to set information about the test result
(Pass/Fail).

A set of Report functions is provided to write the test results to the report file in a
standardized form.

User Interface functions display the test progress on the screen and provide standar-
dized dialogs (e.g. for component selection).

A set of Measurement functions is provided to access the basic measurement equip-
ment for the self test like voltage, current, resistor measurements and functions to
switch the DMM to the analog bus.

10.5 Software detailed design

10.5.1 Coding Rules

See Chapter 9.5.1, "Coding Rules", on page 157.

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

206User Manual 1143.6450.42 ─ 22

10.5.2 Self Test Sequence

The self test of the system is done by a self test sequence.

10.5.2.1 MainSequence Setup

● RESMGR_Setup loads the physical INI and the self test application INI file
● SFT_Setup initializes the self test support library and displays the self test dialog

windows

10.5.2.2 MainSequence Main

● other standard/customer SFT library calls
● SFTSTSVP_Test performs the TSVP self test

10.5.2.3 MainSequence Cleanup

● SFT_Cleanup closes the self test support library
● RESMGR_Cleanup closes the resource manager

10.5.3 Standard and Customer Self Test Libraries Reference

10.5.3.1 Overview

There is an naming convention for the self test libraries:

● SFTSxxxx.DLL (standard)
● SFTCxxxx.DLL (customer-specific)

where xxxx identifies the system or module. The name of the DLL in uppercase char-
acters is identical to the prefix used for every exported symbol and every internal
defined constant value of the library. The prefix must also be used in the function panel
file for LabWindows CVI and therefore it must contain only alphanumeric characters.

The interface and internal structure of Standard and Customer Self Test Libraries are
identical. The libraries conform to the architecture described in the other chapters.

Because a self test library normally exports only a single function, it is legal to omit the
Setup and Cleanup functions from the call interface and include them at the beginning
and at the end of the self test routine. A XXX_Lib_Version() is also not necessary
because the actual version of a self test library is written directly to the report file.

The following chapters show how a customer self test library could look like. See the
source file sftcsample.c in the SFT sample project for details.

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

207User Manual 1143.6450.42 ─ 22

10.5.3.2 Self Test Concept

All results of a self test library function call are written in a common report file (see
Sft_report.txt of the sample project). The name and location of that file can be
configured in the application layer INI file and changed via dialog at runtime. The report
consists of the following elements:

● parts
● components
● test cases
● test case informations
● run-time errors

All self test parts, components, test cases and test case information objects are hold in
a tree structure. All items within one level must have unique names. The run – time
error messages and the objects on the lowest level have no names.

 run – time errors
 - part 1
 - component 1
 - test case 1
 comment
 comment
 table
 comment
 table
 - component 2
 - test case 1
 comment
 result
 result
 + component 3
 + part 2
 + part 3

Part

Parts are defined in the application layer INI file. The information from the [SftParts]
section is kept in the part list in the self test support library. This list is generated by the
SFT_Setup function. A self test part may be a device in a measurement system or the
cabling. Read and write access is accomplished by Get/Set Attribute functions. This
functions work on the active part. There is a function to select a part. If components are
added to the self test, they are associated to the selected part.

Component

To perform tests for a part at least one "component" must be added. A component may
be a simple device (Power Supply), a option in a device (CMU) or a plug in card in the
TSVP. The SFT support library provides functions to add, select and modify compo-
nent items. All component items are stored in an internal list of the self test support

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

208User Manual 1143.6450.42 ─ 22

library. Additionally there is a dialog function which allows the user to select the com-
ponents before the self test for that part is started. The programmer of the self test
library can decide whether to show this dialog or not. The dialog shows all component
items in the list and the user can modify the "selected" attribute. If test cases are added
to the self test, they are associated to the active component.

Test case

To do tests for a component the self test library has to create at least one test case
item. The self test support library provides functions to add, select or modify test case
items. All items are stored in an internal list of the self test support library.

Test case information

A self test library can associate any of the following objects to the activated test case
using the report functions:

● comment
● text result
● error message
● warning
● flexible table
● measurement result table

Run - time error

Unexpected or severe errors are handled in the way described in Chapter 9.5.4.1,
"Error handling", on page 179. Such errors will cause TestStand to pop up a Run –
Time Error dialog. Additionally the programmer of the self test library is responsible
that this error text is written to the self test report by using the appropriate function in
the self test support library.

10.5.3.3 Configuration Information

The configuration information for each self test library is similar to the configuration
information for a high-level library (cf. [RESMGR]). Each library requires a bench sec-
tion, where the device under test and the devices required to perform the self test are
described.

Additionally the self test support library requires some entries in the application layer
INI file for the SFT_Setup function. See Chapter 7.1.9, "Self Test Support Library",
on page 70.

To show the concept of a self test library a sample project is added to the R&S GTSL
software. The entry "SAMPLE" in section [SftParts] in the application layer INI file is
created for that library.

The sample library tests two imaginary components. One is called "AUX" the other one
"DCS". With the AUX component some report functions of the self test support library
are shown. The DCS component is a imaginary device. To test this device it is neces-
sary to open a session with the device driver. The ports DCS_HI and DCS_LO of the

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

209User Manual 1143.6450.42 ─ 22

device DCS are connected to the Self Test Matrix Card via channel P11 and P13. The
Switch Manager is used to perform signal routing tasks.

This library requires the following entries in the physical and application layer INI file.

physical layer INI file:

[device->SftDMM]
Description = "Self Test Digital Multimeter"
Type = NI4060
ResourceDesc = DAQ::2::INSTR
DriverPrefix = niDMM
DriverDll = nidmm_32.dll
DriverOption = Simulate=1,DriverSetup=PXI-4060
PowerLineFrequency = 50
;
[device->SftRelayCard]
Description = "Self Test Matrix Card"
Type = PMA1
ResourceDesc = PXI2::1::0::INSTR
DriverPrefix = rspma
DriverDll = rspma.dll
DriverOption = "Simulate=1,DriverSetup=MCR:FFFFFFF6 CRAuto:1 BusSel:0"
;
[device->SampleDcs]
Description = "Imaginary Sample Device"
Type = DCS_SAMPLE
ResourceDesc = PXI2::4::0::INSTR
;
; mantadory analog bus entry
[device->ABUS]
Description = "Analog Bus"
Type = ab
;
; hard wired connections
[io_channel->system]
DCS_HI = SftRelayCard!P11
DCS_LO = SftRelayCard!P13

application layer INI file:

[ResourceManager]
;
; Global tracing flags
Trace = 1
TraceToScreen = 0
TraceTimeStamp = 1
TraceThreadID = 0
TraceFile = c:\temp\trace.txt
;
[bench->SFT]
Trace = 1

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

210User Manual 1143.6450.42 ─ 22

Simulation = 1
DigitalMultimeter = device->SftDMM
SwitchDevice = device->SftRelayCard
;
[SftOptions]
SystemName = TS7100
SFTFixture = 1
ManualInterventions = 1
ReportFile = c:\temp\sft_report.txt
ReportStyle = 3
ReportAppend = 0
SuppressDialog = 0
StopOnFirstFailure = 0
;
; Self test parts
; Format: "PartX" = PartName, BenchName, SelectFlag
; The PartName must be unique for the whole section!
[SftParts]
Part1 = TSVP, TSVP, 1
Part2 = SAMPLE, SAMPLE, 1
;
; TSVP self test bench
[bench->TSVP]
Trace = 1
Simulation = 1
;
; Self test bench for the sample library
[bench->SAMPLE]
Trace = 1
Simulation = 1
AnalogBus = device->ABUS
SwitchDevice1 = device->SftRelayCard
DCS = device->SampleDcs
AppChannelTable = io_channel->Sample
;
; channel table for the self test sample library
[io_channel->Sample]
ABa1 = ABUS!ABa1
ABa2 = ABUS!ABa2

The keys "Trace" and "Simulation" are all set to "1" to allow debugging without any
hardware.

10.5.3.4 Self test library structure

The exported "self test function" has the following structure:

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

211User Manual 1143.6450.42 ─ 22

Figure 10-7: Exported self test function

The subroutine "check components" has the following structure:

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

212User Manual 1143.6450.42 ─ 22

Figure 10-8: Check components function

The subroutine "check component X" has the following structure:

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

213User Manual 1143.6450.42 ─ 22

Figure 10-9: Check single component

The subroutine "execute test case X" has the following structure:

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

214User Manual 1143.6450.42 ─ 22

Figure 10-10: Test Case Function

Self Test Function

This function is called from the self test sequence. Be sure that the SFT_Setup func-
tion was called before. It performs the following tasks:

● Selects the given part
● Checks whether the given part is selected
● Gets the bench name related to the given part
● Allocates the bench resource
● Checks for tracing flag
● Checks the resource type
● Checks for simulation flag
● Opens the Switch Manager
● Gets the option flags set for the whole self test sequence
● Calls the function to perform the tests
● Closes the Switch Manager
● Frees the bench resource
● If an severe error occured it writes a message to the self test report

See function "SFTCSAMPLE_Test" in the sample project.

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

215User Manual 1143.6450.42 ─ 22

Components creation and dispatch function

This function is called from the exported self test function if the part is selected to be
tested. It performs the following tasks:

● Creates all components for that part
● Shows the component select dialog if allowed
● Checks whether a component is selected to be tested
● Calls the appropriate component test function.

See function "checkComponents" in the sample project.

Component test function

If a component is selected to be tested, this function will be called by the component
dispatch function. It executes all the test cases for the component. It creates all the test
cases in the self test support library. The test cases are selected and the tests are
done in this routine or by calling a test case function. It is the responsibility of this func-
tion to check some preconditions before calling a test case routine. If a test case can’t
be executed a comment is added to the report to inform the user for the reason.

See functions "checkComponentDcs" and "checkComponentAux" in the sample proj-
ect.

Test case function

It is called from the test case dispatcher (the component test function).

The test case is already created and selected by the dispatch routine. The precondi-
tions are already chekked. It normally performs some measurements (e.g. with the
SFT_Dmm_ functions) and reports the results with help of the self test support library.
Finally it sets the test case status.

See functions "testDcsVoltage", "testDcsDeviceSft", "testAuxErrorItem" or "testAuxTa-
bleItem" in the sample project.

10.5.4 Resource Description

See Chapter 9.5.3, "Resource description", on page 178

10.5.5 Miscellanous

10.5.5.1 Error Handling

Error handling in a self test library is a little bit different from the handling in high - level
libraries. The programmer must decide how to report errors from the underlying drivers
or libraries.

Only unexpected or severe errors are handled in the way described in Chapter 9.5.4.1,
"Error handling", on page 179. Such errors will cause the test sequencer to pop up a

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

216User Manual 1143.6450.42 ─ 22

“Run – Time Error" dialog. Additionally the programmer of the self test library is respon-
sible that this error text is written to the self test report by using the appropriate function
in the self test support library.

Error messages from device drivers or the resource manager that come from a faulty
configuration in the INI files should be written to the self test report in an appropriate
test case. Such an error should cause the test case to fail.

All functions of the self test support library report warnings (ErrorOccured is FALSE
and ErrorCode is greater than zero) if the user aborts the self test or a test case failed
and the option “Stop on first failure" is active. This warnings must lead to a immediate
normal termination of the self test function. See Chapter 10.5.5.6, "Self test abort",
on page 217 for details.

10.5.5.2 Locking

See Chapter 9.5.4.2, "Locking", on page 184 for details.

10.5.5.3 Tracing

See Chapter 10.5.5.3, "Tracing", on page 216 for details.

10.5.5.4 Simulation

The implementation of simulation is not mandatory for a self test library. But it is rec-
ommended to support it. The reasons for running a self test library in simulation mode
are:

● The self test sequence can be programmed and tested without hardware
● Presentation of the self test sequence without hardware
● Generation of a full report with all test cases passed

Simulation is done at a very high level in the library. During simulation mode, the high-
level library must not call any device driver function or any other function requiring
more than the standard PC hardware resources. The library functions should return
some "typical" measured values to generate a "Pass" condition.

Simulation is enabled by the "Simulation" keyword in the appropriate bench section.

In the Setup section of the self test routine, the presence of the "Simulation" keyword is
checked and the value of the simulation flag is stored.

10.5.5.5 Version Handling

The version number of a library is handled in two separate places.

● First, there is a version string which is written to the self test report.
● Second, there is a built-in version number in each DLL, which can be set during the

DLL build. See Chapter 9.5.4.6, "Version handling", on page 188 for details.

Software detailed design

Creation of Self Test LibrariesR&S®GTSL

217User Manual 1143.6450.42 ─ 22

10.5.5.6 Self test abort

While the self test sequence is running a dialog with a "Abort "button is shown. When
this button is activated by the user the event is stored in the self test support library.
Every subsequent call will then return a warning. Another warning will be returned if a
test case fails and the option "stop on first failure" is active. This warnings must lead to
a immediate normal termination of the self test function. When all self test functions of
the sequence will act in the same way the self test will terminate immediately.

10.5.6 CVI project structure

See Chapter 10.5.6, "CVI project structure", on page 217 for details.

10.6 SFT Sample Project

The self test sample project shows how a library interacts with the resource manager,
the self test support library and the device driver functions.

The sample project is available in the following path

...\Gtsl\Develop\Libraries\Sftcsample

SFT Sample Project

Instrument Soft PanelsR&S®GTSL

218User Manual 1143.6450.42 ─ 22

11 Instrument Soft Panels
The Instrument Soft Panels permit interactive operation of all TSVP hardware modules.
The Soft Panels can be used to perform all the setting, switching and measuring func-
tions.

In addition, they offer a range of useful tools, such as:

● Pin Location: Using this tool, you can verify the correct wiring and contacting of a
test adapter.

● Create Physical.ini: Tool for automatically creating a Physical .ini file.

11.1 Starting the Soft Panels

Proceed as follows to start the Soft Panels:

1. Start the TSVP Soft Panel application via the menu path "Start -> Programs ->
GTSL -> Instrument Soft Panels"
First, the software will determine the modules available in the system and display
them:

Figure 11-1: TSVP Soft Panel, main window

Starting the Soft Panels

Instrument Soft PanelsR&S®GTSL

219User Manual 1143.6450.42 ─ 22

2. Select a module in the list and click "Open". The instrument panel for the module
is displayed.
The module can only be operated via the instrument panel. In the main window you
can start other instrument panels at any time.

Once the Instrument Soft Panels have been started, no other application must be
active that also require the hardware modules, such as the self-test or a test applica-
tion.
If hardware modules are not found, theTSVP Soft Panel displays a simulation module
for each TSVP module type.

11.2 Main Window

11.2.1 Controls

The main window displays all the TSVP modules available in the system. The associ-
ated instrument panels are started via the "Open" button or simply by doubleclicking
the desired list entry.

An already open instrument panel is represented by
an open 'folder'. Doubleclick a list entry of that type
to move the panel to the foreground.

Click the "Close" button to close an open panel.

The "Quit" button terminates the TSVP Soft Panel and closes any open instrument
panels.

The "CAN Board" and "Controller" settings refer to the configuration of the CAN bus
for the TSVP modules. The default value for these settings is 0. For special system
configurations, a different CAN controller can be selected in these fields. The
"Rescan" button triggers a new search for CAN modules in the system.

11.2.2 Menus

The <File><Exit> menu command terminates the TSVP Soft Panel and closes any
open instrument panels.

The <Tools> menu provides various help programs such as automatically creating a
"Physical.ini" file that describes the hardware configuration of the R&S Com-
pactTSVP. For more information on this topic, please refer to Chapter 11.4, "Tools",
on page 226 in this manual.

The <Help><Usage...> menu command provides information on the command line
parameters of the Soft Panel, please refer to the following chapter.

Main Window

Instrument Soft PanelsR&S®GTSL

220User Manual 1143.6450.42 ─ 22

The <Help><About> menu command displays the version number of the TSVP Soft
Panel and of the R&S GTSL software currently used on the system.

11.2.3 Command Line Parameters

The TSVP Soft Panel can be started with the following command line parameters:

-simulation In addition to the hardware modules found, a simu-
lation module is displayed for each TSVP module
type. It permits operation in simulation mode, i.e.
without any physical hardware present.

-nocan The CAN bus is not scanned upon start of the TSVP
Soft Panel. This option accelerates the start of the
Soft Panel if there are no CAN modules.

-nopxi The PCI/PXI bus is not scanned upon start of the
TSVP Soft Panel. This option accelerates the start
of the Soft Panel if there are no PCI modules.

-can::<c> This parameter is used for pre-assigning the set-
tings CAN Board and Controller, where stands
for theCAN board number and <c> for the controller
number. This option is useful if the CAN bus is not
controlled via the standard controller. Example: -
can1::1

The TSVP Soft Panel can be started with command line parameters in two ways:

1. By opening a prompt with "Start -> Programs -> Accessories -> Command
Prompt" and entering a call, e.g.
C:\> tsvp_panel -simulation

2. By creating a shortcut on the desktop:

● Right-click the desktop and select the menu command "New -> Shortcut". In
the following dialog, select the file
C:\Program Files\Rohde&Schwarz\GTSL\Bin\tsvp_panel.exe. In
the next step, assign a name to the shortcut, e.g. "TSVP Panel Simulation".

● Right-click the new shortcut and select the menu command "Properties."

Main Window

Instrument Soft PanelsR&S®GTSL

221User Manual 1143.6450.42 ─ 22

Figure 11-2: Shortcut to TSVP Soft Panel

● Now enter the command line parameter(s) in the "Target" field behind the file
name.

● Doubleclick the new shortcut to start the TSVP Soft Panel with these new com-
mand line parameters.

11.3 Instrument Panels

The individual instrument panels permit interactive operation of the respective module,
such as setting, switching and measuring. An instrument panel is made up of a main
window accommodating the most frequently used controls. Further subdialog windows
and functions can be called via menus.

Instrument Panels

Instrument Soft PanelsR&S®GTSL

222User Manual 1143.6450.42 ─ 22

Figure 11-3: R&S TS-PSAM instrument panel with subdialog windows

The instrument panels feature a similar design. For this reason, the following chapters
describe the properties common to all the instrument panels.

11.3.1 Menu Structure

The <File><Close> menu command closes the instrument panel.

The <Configure> menu command provides a number of additional menu commands
for displaying the subdialog windows for the switching, triggering and the like.

The <Utility><Revision Query...> menu command displays information on the serial
number, the firmware version and the software version of the module.

The <Utility><Reset> menu command resets the module to the default setting.

The <Help><About> menu command displays the version number of the TSVP Soft
Panel and of the R&S GTSL software currently used on the system.

Instrument Panels

Instrument Soft PanelsR&S®GTSL

223User Manual 1143.6450.42 ─ 22

11.3.2 Settings

Figure 11-4: Settings, R&S TS-PSAM

There are various input possibilities for configuring the modules.

● Drop-down list boxes for selecting individual options, e.g. the Measurement Fun-
cion as shown in Figure 11-4.

● Text input fields for numeric values.
● Buttons and slide controls.

The setting is effective as soon as the entry has been made. Subdialog boxes with an
"Apply" button are an exception. In this case, the data are accepted only when
"Apply" is pressed.

11.3.3 Subdialog Window

A subdialog window offers extended settings such as Triggering that can be called via
the main window menu (Figure 11-4). Figure 11-5 shows a submenu window for set-
ting the triggering.

Instrument Panels

Instrument Soft PanelsR&S®GTSL

224User Manual 1143.6450.42 ─ 22

Figure 11-5: Subdialog window, R&S TS-PAM trigger setting

The subdialogs are called via the <Configure> menu. The subdialogs are displayed in
parallel to the main window of the instrument panel. If a subdialog window has an
"Apply" button, the data will be sent to the instrument only when "Apply" has been
clicked.

Subdialog windows are closed by clicking the button in the title bar.

11.3.4 Relay Matrix

Depending on the module, the connections are either made in the main window or via
a subdialog window in the Configure><Switches...> menu.

Instrument Panels

Instrument Soft PanelsR&S®GTSL

225User Manual 1143.6450.42 ─ 22

Figure 11-6: Relay matrix, R&S TS-PAM

The relay matrix of the modules to the analog bus and the front connector is displayed
in the form of a graphics. The controls at the junctions of the lines are relays. The

Instrument Panels

Instrument Soft PanelsR&S®GTSL

226User Manual 1143.6450.42 ─ 22

relays can be opened and closed by clicking the controls. Closed relays are represen-
ted with a dot.

11.4 Tools

The following software tools can be accessed via the <Tools> menu of the TSVP Soft
Panel:

<Tools><Pin Location...>

Tool for checking the adapter wiring. Refer to Chap-
ter 11.4.1, "Pin Location", on page 226.

<Tools><Create Physical.ini...>

Tool for automatically creating a "Physical.ini" file for
the current system. Refer to Chapter 11.4.2, "Create
Physical.ini", on page 235.

<Tools><Front Connectors>

Tool for displaying module front connectors. Refer to
Chapter 11.4.3, "Front Connectors", on page 237.

The tools can be called only if an instrument panel is not open.

11.4.1 Pin Location

Pin Location is used to verify the adapter wiring using a probe. A pin can be identified
rapidly by touching it with a probe. This tool is also useful in the case of contact prob-
lems.

11.4.1.1 Hardware required

Pin Location requires a Source and Measurement Module R&S TS-PSAM for measur-
ing the resistance and one or more R&S TS-PMB matrix modules to which the unit
under test (UUT) or adapter is connected.

11.4.1.2 Connecting the Proble

The probe is directly connected to the front connector of the R&S TS-PSAM module.
The following connections are possible:

Tools

Instrument Soft PanelsR&S®GTSL

227User Manual 1143.6450.42 ─ 22

Figure 11-7: Connecting the probe (example)

Option a) is suited primarily for a "fast" verification of the adapter wiring. It merely
requires a cable with a probe.

The cable must be disconnected again as soon as the test program or another applica-
tion (e.g. the self-test) is started. Otherwise faulty measurements may result since the
probe is permanently connected to the ABa1 analog bus.

Option b) should always be selected when the probe or a socket for the probe is inte-
grated in the adapter. In this case the probe is disconnected from analog bus ABa1 via
a relay multiplexer of the R&S TS-PSAM module when it is not being used. For this
purpose, the adapter must be fitted with an additional wire bridge.

11.4.1.3 Measurement Principle

After starting Pin Location, the software first discharges the pins to be tested individu-
ally towards each other and towards ground. If the residual voltage of a pin is still too
high after it has been discharged, it cannot be included in the scan list. If the highest
residual voltage measured exceeds 5 V, Pin Location cannot be started since the mea-
suring system could be at risk with this setting.

After discharging, the software configures the R&S TS-PSAM module as an Ohmmeter
and the DMM_HI connector is coupled with the probe via the local analog bus LABa1.

The DMM_LO connector is coupled to all the UUT pins, i.e. they are short-circuited
towards each other. The Ohmmeter continuously measures the resistance. As long as
the probe does not have contact to one of the test pins, the measurement will yield a
high-resistance result.

Tools

Instrument Soft PanelsR&S®GTSL

228User Manual 1143.6450.42 ─ 22

Figure 11-8: Measurement Principle

As soon as the probe touches a test pin, the measurement will supply a low resistance
that depends on the resistances of the matrix relays, the supply lines and the contact
resistance of the probe. As soon as this resistance is lower than 10 Ohm, the actual
scan is started. This requires that the contact remains until the pin has been located.

For the scan, first all the test pins are disconnected from the DMM_LO connector of the
Ohmmeter. Thereafter, they are individually connected to DMM_LO one after the other,
and the resistance is measured again. If a low value is measured here, the connected
pin has been found and the information is output.

As soon as the scan has been completed, all the pins are reconnected to DMM_LO
and the program waits for another contact.

11.4.1.4 Starting Pin Location

Pin Location is started via the menu command <Tools><Pin Location...> of the TSVP
Soft Panel or via function key F2.

11.4.1.5 Configuration Dialog

The Configuration dialog is displayed after Pin Location has been started (Figure 11-9).

Tools

Instrument Soft PanelsR&S®GTSL

229User Manual 1143.6450.42 ─ 22

Figure 11-9: Configuration Dialog

Tools

Instrument Soft PanelsR&S®GTSL

230User Manual 1143.6450.42 ─ 22

"Configuration Files" In this window area, the configuration files for the
physical and application layers can optionally be
entered. These files are required to be able to dis-
play the logical node names (from
application.ini) and the device names (from).
Use the "Browse..." button to select the files.

"Application Layer File" In this field, enter the path and the name of the
application.ini file, in which the name assign-
ment of the adapter to be tested is stored. Pin Loca-
tion reads all the name tables (i.e. sections starting
with [io_channel->]) from this file and uses them for
displaying the logical node names. If a file is not
specified here, the logical node names are not con-
verted and only the physical names will be dis-
played.

"Physical Layer File" In this field, enter the path and the name of the
physical.ini file, in which the configuration of
the test system is stored. By default, this is the file
physical.ini in the folder
C:\Program Files\Rohde& Schwarz\GTSL\
Configuration. If a file is not specified in this
field, the device names are not converted. The file
must always be specified, when an
application.ini file is specified.

"Hardware Configuration" The hardware modules and the probe wiring are
selected in this window area.

"Measurement Module" Select the R&S TS-PSAM module that is to be used
for the measurements and to which the probe is to
be connected.

"Probe Wiring via" Select how the probe is to be connected. The fields
below this field show, to which pins of the front con-
nector the probe and the bridge must be connected.
The following connection possibilities have been
provided:

Connection via Connection of the probe Connection of the bridge

LABA1 X10 A 1 NA

RACOM - RACH1 X10 A 13 X10 A 1 - X10 A 9

RACOM - RACH2 X10 A 13 X10 A 1 - X10 A 10

RACOM - RACH3 X10 A 13 X10 A 1 - X10 A 11

RACOM - RACH4 X10 A 13 X10 A 1 - X10 A 12

RBCOM - RBCH1 X10 B 13 X10 A 1 - X10 B 9

RBCOM - RBCH2 X10 B 13 X10 A 1 - X10 B 10

RBCOM - RBCH3 X10 B 13 X10 A 1 - X10 B 11

RBCOM - RBCH4 X10 B 13 X10 A 1 - X10 B 12

Tools

Instrument Soft PanelsR&S®GTSL

231User Manual 1143.6450.42 ─ 22

"Switch Module Selection" Select the switch module(s) to be included in the
scan. By default, all the switch modules are
selected.

"Scan Options" The option Scan only configured Pins limits the
scan to those pins that are listed in a name table in
the Application Layer File. You can narrow down the
scan further by delecting swith modules in the
Switch Module Selection field. This option is availa-
ble only if an Application Layer File has been speci-
fied. The option Scan all Pins from selected
Switch Modules lets Pin Location perform a scan
across all the pins of the selected switch modules.

11.4.1.6 Report Options

This dialog permits the recording of a report file. The
report format is described in Chapter 11.4.1.10,
"Report Format", on page 234.

Figure 11-10: Report Options

"Write Report File" Enable this checkbox if you want to create a report
file. Enter the path and file name for the report file.
Use the Browse... button to select the path.

"Append to Existing File" Enable this checkbox if you want to append the
report to an existing report. Otherwise, any existing
report will be overwritten after a warning prompt.

Confirm the dialog by clicking the OK button to cre-
ate the report file.

11.4.1.7 Vacuum Controller

This dialog permits the selection of a R&S TS-PVAC
vacum controller.

Tools

Instrument Soft PanelsR&S®GTSL

232User Manual 1143.6450.42 ─ 22

Figure 11-11: Vacuum Controller

" Vacuum Controller" Select a R&S TS-PSYS module in the list for con-
trolling the vacuum controller or select (no vacuum)
if there is no vacuum controller.

"Timeout / s" Enter the maximum wait time in seconds for the
maximum permissible interval between the actuation
of the vacuum valve and the 'Switch closed' feed-
back, before an error is reported. When you confirm
the dialog by clicking the "OK" button, the vacuum
is not yet enabled. This is done only directly before
the scanning procedure is started.

11.4.1.8 Starting the Scanning Procedure

The "Start Pin Location" button starts the scanning
procedure. First, the modules are initiated and the
vacuum is enabled. Thereafter, the discharge proce-
dure is started. Once all the pins have a potential of
zero, the measurement dialog will be displayed.

11.4.1.9 Measurement Dialog

The measurement dialog shows the status of the scanning procedure and the pins
located, and it offers various options.

Tools

Instrument Soft PanelsR&S®GTSL

233User Manual 1143.6450.42 ─ 22

Figure 11-12: Measurement dialog

Table of Contents The display of the contacts located takes up the
main part of the dialog. For each contact, it shows
the logical channel name, the value measured, the
name of the switch module, the physical pin name
and the designation of the location on the front con-
nector of the TSVP system.

Example: F1 S15 X10B21 means:
● F1 - TSVP frame 1
● S15 - Slot 15
● X10B15 - Connector X10, column B, row 15

Some of the fields of the table will remain empty if a
configuration file is not specified.
● Logical Name is empty if no

Application.ini file is specified or if the pin
is not referenced in any name table.

● Device is empty if no Physical.ini file is
specified or if the switch module is not con-
tained in the Physical.ini file.

Tools

Instrument Soft PanelsR&S®GTSL

234User Manual 1143.6450.42 ─ 22

"Status" The status is shown above the table (Discharging,
Waiting for Contact, Scanning, n Pins found,
Paused), next to it the number of pins configured for
the scan operation.

"Scan Options" The option Stop scan after n Contacts detected
aborts a scan as soon as the number of contacts
specified has been detected. This can reduce the
scanning period. When the checkbox is disabled, all
the configured pins will be scanned.

The option Mark as critical if above n Ohms
marks a contact as "critical", if its value exceeds the
threshold specified. It will have a red background in
the table and will be identified with an exclamation
mark in the table as well as in the report.

"Report" This switch is used to enable/disable the recording
of the report. The switch is disabled if a report was
not created.

"Vacuum" This switch is used to enable/disable the vacuum.
The LED to the right shows the current vacuum sta-
tus.

The Running button is used to pause the contact
measurement, e.g. to correct the wiring in the
adapter. In this case, the caption will change to
Paused. Click the button again to resume the scan
operation.

The Configure buton closes the measurement dia-
log and the configuration dialog is displayed again.

Menus Use the menu command <File><Exit> to exit Pin
Location. The <Help><About> menu command dis-
plays the version number of the TSVP Soft Panel
and of the software currently used on the system.

11.4.1.10 Report Format

The following is an example of a Pin Location report.

Pin Location started at 2005-07-05 16:51:35

Configuration Files
 Application : x:\PinLocation\Demoboard_Application.ini
 Physical : c:\Program Files\Rohde&Schwarz\GTSL\Configuration\physical.ini

Measurement Module
 TS-PSAM (PXI1::10::INSTR)
 Probe connected via RACOM - RACH1

Switch Modules
 TS-PMB (CAN0::0::1::10)
 TS-PMB (CAN0::0::1::14)
 TS-PMB (CAN0::0::1::15)

Tools

Instrument Soft PanelsR&S®GTSL

235User Manual 1143.6450.42 ─ 22

Options
 Scan all pins from selected switch modules

Discharge 270 pins

Scan 270 pins
 Critical resistance : 2 Ohms

 Logical Name Resistance Physical Name Location
===
- RN5.3 0.98 Ohms PMB_15!P48 F1 S15 X10B16
- RN5.4 0.93 Ohms PMB_15!P49 F1 S15 X10B17
- RN5.5 0.97 Ohms PMB_15!P50 F1 S15 X10B18
- CTRQ0R 0.97 Ohms PMB_15!P72 F1 S15 X10C8
- CTRQ2R 0.95 Ohms PMB_15!P74 F1 S15 X10C10
- CTRTC 0.97 Ohms PMB_15!P77 F1 S15 X10C13
- RN5.3 0.95 Ohms PMB_15!P48 F1 S15 X10B16
- RN5.5 0.96 Ohms PMB_15!P50 F1 S15 X10B18
- nc 1.00 Ohms PMB_15!P52 F1 S15 X10B20
- RN4.1.S 1.15 Ohms PMB_15!P53 F1 S15 X10B21
+ RN4.1 0.98 Ohms PMB_15!P54 F1 S15 X10B22
+ RN4.2 2.12 Ohms ! PMB_15!P55 F1 S15 X10B23
+ RN4.2.S 2.12 Ohms ! PMB_15!P56 F1 S15 X10B24

Pin Location finished at 2005-07-05 16:58:18

At the beginning of the report, the configuration is described and any problems with the
discharging of the pins. Thereafter a list of the pins detected is displayed in the form of
a table.

Lines beginning with "-", identify the beginning of a new scan. Subsequent lines with
"+" contain further pins detected in the same scan operation.

Resistance values exceeding the critical resistance are identified with a "!" at the end.

11.4.2 Create Physical.ini

Using the <Tools><Create Physical.ini...> menu item, you can create a configuration
file Physical.ini for the current system configuration. This is useful if new modules
are added or if the slot assignments were changed.

A dialog field is displayed prompting you to select the destination path.

Tools

Instrument Soft PanelsR&S®GTSL

236User Manual 1143.6450.42 ─ 22

Figure 11-13: Saving physical.ini

Select the desired destination path for saving the new file to be created. By default, the
path C:\Program Files\Rohde&Schwarz\GTSL\Configuration is set.

Overwrite the standard file
C:\Program Files\Rohde& Schwarz\Configuration\physical.ini only if
you are positive that you have not made any important changes or additions!

The following is an excerpt from an automatically generated Physical.ini file:

;; Created by tsvp_panel Version 01.12
;
[device->PSAM]
Description = 'TS-PSAM Module 1'
Type = PSAM
ResourceDesc = PXI1::10::INSTR
DriverDll = rspsam.dll
DriverPrefix = rspsam
DriverOption = 'Simulate=0,RangeCheck=1'
; Note: the self test DLL and prefix keywords must be removed for the first
; TS-PSAM module, because it is already tested in the basic self test.
; SFTDll = sftmpsam.dll
; SFTPrefix = SFTMPSAM

.

[device->PMB_10]
Description = 'TS-PMB Module in Frame 1 Slot 10'
Type = PMB
ResourceDesc = CAN0::0::1::10

Tools

Instrument Soft PanelsR&S®GTSL

237User Manual 1143.6450.42 ─ 22

DriverDll = rspmb.dll
DriverPrefix = rspmb
DriverOption = 'Simulate=0,RangeCheck=1'
SFTDll = sftmpmb.dll
SFTPrefix = SFTMPMB

[device->PMB_14]
Description = 'TS-PMB Module in Frame 1 Slot 14'
Type = PMB
ResourceDesc = CAN0::0::1::14
DriverDll = rspmb.dll
DriverPrefix = rspmb
DriverOption = 'Simulate=0,RangeCheck=1'
SFTDll = sftmpmb.dll
SFTPrefix = SFTMPMB

[device->PMB_15]
Description = 'TS-PMB Module in Frame 1 Slot 15'
Type = PMB
ResourceDesc = CAN0::0::1::15
DriverDll = rspmb.dll
DriverPrefix = rspmb
DriverOption = 'Simulate=0,RangeCheck=1'
SFTDll = sftmpmb.dll
SFTPrefix = SFTMPMB

[device->PSYS1_15]
Description = 'TS-PSYS1 Module in Frame 1 Slot 15'
Type = PSYS1
ResourceDesc = CAN0::0::5::15
DriverDll = rspsys.dll
DriverPrefix = rspsys
DriverOption = 'Simulate=0,RangeCheck=1'
SFTDll = sftmpsys.dll
SFTPrefix = SFTMPSYS

; The analog bus entry is mandatory if the GTSL Switch Manager or EGTSL is used
[device->ABUS]
Type = AB

11.4.3 Front Connectors

Using the <Tools><Front Connectors> menu item, you can display the front connec-
tor X10 pin assignment for a module. The front connector panel is also accessible
using the <Utility><Display Front Connector> menu item from the instrument panels,
or by pressing the <F10> key.

Tools

Instrument Soft PanelsR&S®GTSL

238User Manual 1143.6450.42 ─ 22

Figure 11-14: Front Connector X10

Tools

	Cover
	Safety Instructions and General Information
	Basic Safety Instructions
	Instrucciones de seguridad elementales
	Certificate of Quality
	Customer Support

	1 General
	2 Software Installation
	2.1 General
	2.2 Installation
	2.2.1 Runtime Setup
	2.2.2 R&S GTSL

	2.3 File Structure

	3 Functional Description
	3.1 Operation of a Test Sequence

	4 R&S GTSL License Management
	5 Configuration Files
	5.1 Syntax
	5.1.1 Naming Conventions
	5.1.2 [LogicalNames] Section
	5.1.3 [Device] Section
	5.1.4 [Bench] Section
	5.1.5 [ResourceManager] Section

	5.2 PHYSICAL.INI
	5.2.1 Example file for PHYSICAL.INI
	5.2.2 Description of Example File PHYSICAL.INI

	5.3 APPLICATION.INI
	5.3.1 Example File for APPLICATION.INI
	5.3.2 Description of Example File APPLICATION.INI

	6 Editing and Running Test Sequences
	6.1 TestStand
	6.1.1 General
	6.1.2 Editing a Test Step
	6.1.3 Running Test Sequences

	6.2 Generic Test Operator Interface R&S GTOP
	6.2.1 General
	6.2.2 Running R&S GTOP
	6.2.3 Operator Interface
	6.2.3.1 Representation
	6.2.3.2 Menu Bar
	6.2.3.3 Test Sequence Display
	6.2.3.4 Banner
	6.2.3.5 Information Bar
	6.2.3.6 Statistic Display

	6.2.4 R&S GTOP Configuration File

	7 Test Libraries
	7.1 Generic Test Libraries
	7.1.1 Audio Analysis Library
	7.1.1.1 General
	7.1.1.2 Entries in PHYSICAL.INI
	7.1.1.3 Entries in APPLICATION.INI
	7.1.1.4 Functions

	7.1.2 DC Power Supply Test Library
	7.1.2.1 General
	7.1.2.2 Entries in PHYSICAL.INI
	7.1.2.3 Entries in APPLICATION.INI
	7.1.2.4 Functions

	7.1.3 Digital I/O Manager Library
	7.1.3.1 General
	7.1.3.2 Entries in PHYSICAL.INI
	7.1.3.3 Entries in APPLICATION.INI
	7.1.3.4 Functions

	7.1.4 DMM Test Library
	7.1.4.1 General
	7.1.4.2 Entries in PHYSICAL.INI
	7.1.4.3 Entries in APPLICATION.INI
	7.1.4.4 Functions

	7.1.5 Factory Toolbox Library
	7.1.5.1 General
	7.1.5.2 Entries in PHYSICAL.INI
	7.1.5.3 Entries in APPLICATION.INI
	7.1.5.4 Functions

	7.1.6 Function Generator Library
	7.1.6.1 General
	7.1.6.2 Entries in PHYSICAL.INI
	7.1.6.3 Entries in APPLICATION.INI
	7.1.6.4 Functions

	7.1.7 Operator Interface Library
	7.1.7.1 General
	7.1.7.2 Entries in PHYSICAL.INI
	7.1.7.3 Entries in APPLICATION.INI
	7.1.7.4 Functions

	7.1.8 Resource Manager Library
	7.1.8.1 General
	7.1.8.2 Entries in PHYSICAL.INI
	7.1.8.3 Entries in APPLICATION.INI
	7.1.8.4 Functions

	7.1.9 Self Test Support Library
	7.1.9.1 General
	7.1.9.2 Entries in PHYSICAL.INI
	7.1.9.3 Entries in APPLICATION.INI
	7.1.9.4 Functions

	7.1.10 Signal Analyzer Library
	7.1.10.1 General
	7.1.10.2 Entries in PHYSICAL.INI
	7.1.10.3 Entries in APPLICATION.INI
	7.1.10.4 Functions

	7.1.11 Signal Routing Library
	7.1.11.1 General
	7.1.11.2 Entries in PHYSICAL.INI
	7.1.11.3 Entries in APPLICATION.INI
	7.1.11.4 Functions

	7.1.12 Switch Manager Library
	7.1.12.1 General
	7.1.12.2 Entries in PHYSICAL.INI
	7.1.12.3 Entries in APPLICATION.INI
	7.1.12.4 Functions

	7.1.13 Utility Library
	7.1.13.1 General
	7.1.13.2 Entries in PHYSICAL.INI
	7.1.13.3 Entries in APPLICATION.INI
	7.1.13.4 Functions

	7.2 In-Circuit Test Libraries
	7.2.1 IC-Check Library
	7.2.1.1 General
	7.2.1.2 Entries in PHYSICAL.INI
	7.2.1.3 Entries in APPLICATION.INI
	7.2.1.4 Functions

	7.2.2 In-Circuit-Test Library
	7.2.2.1 General
	7.2.2.2 Entries in PHYSICAL.INI
	7.2.2.3 Entries in APPLICATION.INI
	7.2.2.4 Functions

	7.2.3 Vacuum Control Library
	7.2.3.1 General
	7.2.3.2 Entries in PHYSICAL.INI
	7.2.3.3 Entries in APPLICATION.INI
	7.2.3.4 Functions

	8 Signal Routing
	8.1 R&S GTSL software for switched connections
	8.1.1 Signal Routing Library
	8.1.2 Switch Manager Library
	8.1.3 ICT Library / R&S EGTSL

	8.2 Analog measurement bus concept
	8.3 Configuration files
	8.3.1 Physical layer
	8.3.1.1 Example of a PHYSICAL.INI file

	8.3.2 Application layer
	8.3.2.1 Example of an APPLICATION.INI file

	8.3.3 Special entries for switched connections
	8.3.3.1 SwitchDevice<i>
	8.3.3.2 AnalogBus
	8.3.3.3 AppChannelTable
	8.3.3.4 SwitchSettings
	8.3.3.5 Simulation
	8.3.3.6 Trace
	8.3.3.7 ChannelTableCaseSensitive
	8.3.3.8 SignalRoutingDisplay

	8.3.4 Channel tables
	8.3.4.1 System-specific channel table
	8.3.4.2 Application-specific channel table

	8.4 Signal Routing Library
	8.4.1 Example of a switched connection
	8.4.2 Switching commands
	8.4.2.1 Channel names in switching commands
	8.4.2.2 Connecting channels
	8.4.2.3 Disconnecting channels
	8.4.2.4 Other disconnect commands
	8.4.2.5 Switch setting commands
	8.4.2.6 Wait commands
	8.4.2.7 Compound commands
	8.4.2.8 Comment

	8.4.3 Switch settings
	8.4.3.1 Entries in APPLICATION.INI
	8.4.3.2 Making switch settings

	8.4.4 Channel attributes
	8.4.4.1 Channel attribute "nonrouting"

	8.4.5 Display switched connection
	8.4.6 Switched connection algorithms
	8.4.6.1 Connecting channels
	8.4.6.2 Routing via analog measurement buses
	8.4.6.3 Manual and automatic routing
	8.4.6.4 Manually and automatically routed channels
	8.4.6.5 Multiple assignment of switching paths
	8.4.6.6 Disconnecting connections
	8.4.6.7 Obsolete connections
	8.4.6.8 Analog measurement buses and coupling relays
	8.4.6.9 Routing on R&S TS-PMB matrix modules
	8.4.6.10 Routing on power switching modules

	8.4.7 Using the Signal Routing Library with other libraries
	8.4.7.1 Switch Manager
	8.4.7.2 Device drivers
	8.4.7.3 Coupling relays
	8.4.7.4 In-Circuit Test
	8.4.7.5 VACUUM Library
	8.4.7.6 Reset modules

	8.4.8 Panel test
	8.4.9 Error cases
	8.4.10 Integrating third-party modules
	8.4.11 Examples
	8.4.11.1 Scanner
	8.4.11.2 Current measurement via shunt

	9 Creation of Test Libraries
	9.1 Scope
	9.1.1 Identification
	9.1.2 System overview

	9.2 Referenced documents
	9.3 Software design decisions
	9.4 Architectural design
	9.4.1 Components
	9.4.2 Concept of execution
	9.4.3 Interface Design
	9.4.3.1 Interface identification and diagrams
	9.4.3.2 Export functions
	9.4.3.3 Device driver interface
	9.4.3.4 Resource Manager interface
	9.4.3.5 Resource Description
	9.4.3.6 Function Panel User Interface

	9.5 Software Detailed Design
	9.5.1 Coding Rules
	9.5.1.1 Language
	9.5.1.2 Programming environment
	9.5.1.3 Templates

	9.5.2 Library reference
	9.5.2.1 Setup function
	9.5.2.2 Cleanup function
	9.5.2.3 Library version function
	9.5.2.4 Measurement functions

	9.5.3 Resource description
	9.5.4 Miscellaneous
	9.5.4.1 Error handling
	9.5.4.2 Locking
	9.5.4.3 Tracing
	9.5.4.4 Simulation
	9.5.4.5 Bench versus device
	9.5.4.6 Version handling

	9.5.5 CVI project structure
	9.5.5.1 Directory structure
	9.5.5.2 CVI project files
	9.5.5.3 Configuration
	9.5.5.4 Building the DLL
	9.5.5.5 Building Help

	9.6 SAMPLE project

	10 Creation of Self Test Libraries
	10.1 Scope
	10.1.1 Identification
	10.1.2 System overview

	10.2 Referenced documents
	10.3 Overview
	10.3.1 Test System Configuration
	10.3.2 Self Test Levels

	10.4 Software architectural design
	10.4.1 Software Components
	10.4.2 Concept of Execution
	10.4.2.1 Self Test Sequence
	10.4.2.2 TSVP Self Test
	10.4.2.3 Standard Self Test Libraries
	10.4.2.4 Customer Self Test Libraries
	10.4.2.5 Self Test Support Library
	10.4.2.6 Configuration Information

	10.4.3 Interface design
	10.4.3.1 Interface Identification and Diagram
	10.4.3.2 Standard/Customer SFT Call Interface
	10.4.3.3 Resource Manager Call Interface
	10.4.3.4 Device Driver Call Interface
	10.4.3.5 High Level Library Call Interface
	10.4.3.6 SFT Support Library Call Interface

	10.5 Software detailed design
	10.5.1 Coding Rules
	10.5.2 Self Test Sequence
	10.5.2.1 MainSequence Setup
	10.5.2.2 MainSequence Main
	10.5.2.3 MainSequence Cleanup

	10.5.3 Standard and Customer Self Test Libraries Reference
	10.5.3.1 Overview
	10.5.3.2 Self Test Concept
	10.5.3.3 Configuration Information
	10.5.3.4 Self test library structure

	10.5.4 Resource Description
	10.5.5 Miscellanous
	10.5.5.1 Error Handling
	10.5.5.2 Locking
	10.5.5.3 Tracing
	10.5.5.4 Simulation
	10.5.5.5 Version Handling
	10.5.5.6 Self test abort

	10.5.6 CVI project structure

	10.6 SFT Sample Project

	11 Instrument Soft Panels
	11.1 Starting the Soft Panels
	11.2 Main Window
	11.2.1 Controls
	11.2.2 Menus
	11.2.3 Command Line Parameters

	11.3 Instrument Panels
	11.3.1 Menu Structure
	11.3.2 Settings
	11.3.3 Subdialog Window
	11.3.4 Relay Matrix

	11.4 Tools
	11.4.1 Pin Location
	11.4.1.1 Hardware required
	11.4.1.2 Connecting the Proble
	11.4.1.3 Measurement Principle
	11.4.1.4 Starting Pin Location
	11.4.1.5 Configuration Dialog
	11.4.1.6 Report Options
	11.4.1.7 Vacuum Controller
	11.4.1.8 Starting the Scanning Procedure
	11.4.1.9 Measurement Dialog
	11.4.1.10 Report Format

	11.4.2 Create Physical.ini
	11.4.3 Front Connectors

